手机阅读

圆柱的表面积教案(通用9篇)

格式:DOC 上传日期:2023-11-12 00:37:10 页码:14
圆柱的表面积教案(通用9篇)
2023-11-12 00:37:10    小编:ZTFB

教案中需要包含教学目标、教学内容、教学方法、教学手段等重要要素。教案的编写要关注学生的学习兴趣和主动性,培养他们的学习动力。教师可以根据教学实际情况,灵活运用这些教案范例,进行个性化的教学设计。

圆柱的表面积教案篇一

教材40页、41页例1、例2、例3及做一做,练习十第2-5题。

素质教育目标。

(一)知识教学点。

2.掌握圆柱侧面积和表面积的计算方法。

(二)能力训练点。

能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题。

教具学具准备。

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。

教学步骤。

一、铺垫孕伏。

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知。

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1。

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3.14×0.5×1.8。

=1.75×1.8。

≈2.83(平方米)。

答:它的`侧面积约是2.83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

圆柱的表面积教案篇二

理解求表面积、侧面积的计算方法,并能正确进行计算.

能灵活运用表面积、侧面积的有关知识解决实际问题.

一、复习准备。

(一)口答下列各题(只列式不计算).

1.圆的半径是5厘米,周长是多少?面积是多少?

2.圆的直径是3分米,周长是多少?面积是多少?

(二)长方形的面积计算公式是什么?

(三)回忆圆柱体的特征.

二、探究新知。

1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系.

2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高.

(二)教学例1.

1.出示例1。

例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的'侧面积.(得数保留两位小数)。

2.学生独立解答。

教师板书:3.14×0.5×1.8。

=1.75×l.8。

≈2.83(平方米)。

答:它的侧面积约是2.83平方米.

3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积.

(三).

1.教师说明:圆柱的侧面积加上两个底面积就是.

是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积.

(四)教学例2.

1.出示例2。

例2.一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

2.学生独立解答。

侧面积:2×3.14×5×15=471(平方厘米)。

底面积:3.14×=78.5(平方厘米)。

表面积:471+78.5×2=628(平方厘米)。

3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积.

(五)教学例3.

1.出示例3。

例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。

2.教师提问:解答这道题应注意什么?

这道题是求做这个水桶要用铁皮多少平方厘米.实际上是求这个圆柱形水桶的表面积.题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积.

3.学生解答,教师板书.

水桶的侧面积:3.14×20×24=1507.2(平方厘米)。

水桶的底面积:3.14×。

=3.14×。

=3.14×100。

=314(平方厘米)。

需要铁皮:1507.2+314=1821.2≈1900(平方厘米)。

答:做这个水桶要用1900平方厘米.

4.教师说明:这里不能用“四舍五入”法取近似值.在实际中,使用的材料都要比计算得到的结果多一些.因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法.

5.“四舍五入”法与“进一法”有什么不同.

(1)“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去.

(2)“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一.

三、课堂小结。

归纳:,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握.如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积.另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用.

四、巩固练习。

1.底面周长是1.6米,高是0.7米。

2.底面半径是3.2分米,高是5分米。

(二)计算下面各.(单位:厘米)。

(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积.(有盖和无盖两种)。

五、课后作业。

(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?

六、

探究活动。

面包的截面。

活动目的。

培养学生的观察能力和操作能力,发展学生的空间观念.

活动题目。

有一个圆柱形的面包,要切一刀把它分成两块,截面会是什么形状的图形?

活动过程。

1、学生分组讨论.

2、利用橡皮泥捏一个圆柱体,进行实验,验证结论.

3、画出截面图,表示结论,发展空间观念.

参考答案。

1、沿水平方向横切一刀,截面是圆形.(如图1)。

2、沿垂直方向纵切一刀,截面是一个长方形.(如图2)。

3、沿侧面斜切一刀,会形成大小不一的椭圆形.(如图3)。

4、从顶面向侧面斜切一刀,会形成椭圆的一部分.(如图4)。

5、从上底面斜切一刀到下底面,会形成椭圆的一部分.(如图5)。

(图1)(图2)(图3)(图4)(图5)。

圆柱的表面积教案篇三

结合教学用具和学生已有认知,探索圆柱表面积的计算方法,能正确计算圆柱的表面积和侧面积,并根据公式解决实际问题。

通过想象、操作等活动,知道圆柱侧面展开图是长方形的同时,熟记表面积的计算公式,发展空间观念。

能根据具体情境,借助圆柱表面积的计算方法解决生活中的一些实际问题,体会数学与实际生活的密切联系。

圆柱表面积的计算方法以及在生活中的应用。

(一)导入新课。

师:在前面的学习中,我们已经认识了圆柱,并且知道了生活中有很多物体的形状是圆柱。大家来看,这个圆柱形状的物体。它的制作需要一定的材料(出示一个茶叶盒)请同学们想一想,要“制作这样一个茶叶盒需要多少材料”,实际上是在求圆柱的什么?(边演示边讲解)。

(二)生成原理。

师生活动:要求“制作茶叶盒所需的材料”实际上是求圆柱的侧面积和两个底面面积(边演示边说),我们把圆柱侧面的面积叫做圆柱的侧面积,把圆柱底面的面积叫做圆柱的底面积,圆柱的侧面积加上两个底面的面积叫做圆柱的表面积。

(2)创疑激趣。

(3)小组合作交流。

师:请同学们想一想,我们能不能把圆柱的侧面转化成所学过的图形来求侧面积?

小组汇报:圆柱的侧面积就等于长方形的面积,长方形的长等于圆柱底面的周长,宽等于圆柱的高,因此圆柱的侧面积也就等于圆柱的底面周长乘以高。

师:我们已经会求圆柱的侧面积,那圆柱的表面积呢?(让学生回答,教师板书求表面积的算式,并板书课题“圆柱的表面积”)。

师生活动:用字母表示侧面积和底面积的话,该如何表示圆柱的表面积。

(三)深化原理。

圆柱的表面积是圆柱的侧面积加上两个底面面积之和。如果圆柱只有一个底面,它的表面积则是侧面积和一个底面积之和。如水桶。

(四)应用原理。

(五)课堂小结。

生:测量、确定笔筒的大小。

师:如何确定?

生:确定底面半径,还有笔筒的高。

师:课后利用所学知识给自己设计一个笔筒,并做一下“做一做”。

圆柱的表面积教案篇四

目标。

1、知道圆柱侧面积和表面积的含义。

2、通过操作推导并掌握求圆柱的侧面积、表面积的方法,并能运用到实际中解决问题。

重点。

圆柱侧面积和表面积的计算方法。

难点。

运用所学的知识解决简单的实际问题。

学     习     过     程。

师生笔记。

知识链接:

1、用公式表示出圆的半径、直径、周长、面积之间的关系。

2、圆柱的上下两个底面都是(      ),它们的面积(       )。

3、长方形的面积=        。

长方体的表面积=                。

正方体的表面积=         。

知识超市:

操作:(一)试一试,怎样可以得到圆柱形的侧面展开图?

把圆柱的侧面沿高剪开,展开图是(       ),圆柱的底面周长就是它的(    ),圆柱的高就是它的(     )。

计算圆柱的侧面积实际就是计算(              )。

(1)一个圆柱,底面周长是1.6m,高是0.7m,求它的侧面积。

(2)一个圆柱,底面直径是5cm,高是10cm,求它的侧面积。

操作(二)有两底的圆柱展开后呈什么形状?

圆柱是由(         )和(         )三部分组成的。

圆柱的表面积包括(            )和(           )。

(3)一个圆柱的高是15厘米,底面半径是5厘米,求它的表面积。

我会用:一顶圆柱形厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)。

想:求做这样一顶厨师帽需用多少面料,实际上就是求这顶圆柱形厨师帽的(        ),厨师帽由_________和__________组成。

列式计算:。

达标检测:

圆柱的表面积教案篇五

教材40页、41页例1、例2、例3及做一做,练习十第2-5题。

素质教育目标。

(一)知识教学点。

(二)能力训练点。

能灵活运用求表面积、侧面积的有关知识解决一些实际问题。

教学重点。

理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点。

能灵活运用表面积、侧面积的有关知识解决实际问题。

教具学具准备。

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。

教学步骤。

一、铺垫孕伏。

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知。

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的'长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1。

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3。14×0。5×1。8。

=1。75×1。8。

≈2。83(平方米)。

答:它的侧面积约是2。83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

3.教学。

(1)教师说明:圆柱的侧面积加上两个底面积就是。

(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

4.教学例2。

(2)指同学读题,找出已知条件和所求问题。

(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

做完后订正,订正时让学生说出有关的计算公式。

(5)反馈练习:完成做一做第2题。

指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5.教学例3。

(1)出示例3,指名读题,找出已知条件和所求问题。

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

(6)“四舍五入”法与“进一法”有什么不同。

圆柱的表面积教案篇六

1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

教师准备一个圆柱模型(表面要有可揭下各个部分的一层纸);学生准备一个圆柱体。

掌握圆柱侧面积的计算方法。

:能根据实际情况正确地进行计算。

1.复习圆柱的特征。提问:圆柱有什么特征?

2.计算下面圆柱的侧面积(口头列式):

(1)底面周长4.2厘米,高2厘米。

(2)底面直径3厘米,高4厘米。

(3)底面半径1厘米,高3.5厘米。

3.提问:圆柱的一个底面面积怎样计算?

4.引入新课。

我们已经会计算圆柱的侧面积,那么怎样计算圆柱的表面积呢?这节课就学习圆柱的表面积计算,(板书课题)

1.认识表面积计算方法。

(1) 请同学们拿出圆柱来看一看,想一想圆柱的表而包括哪几个部分,然后告诉大家。指名学生拿出圆柞,边指边说明它的表面包括哪几个部分。

(2)教师演示。

出示教具,说明把表面全部展开,看一看得到什么图形,和大家说的对不对。揭下圆柱表面的纸,贴在黑板上,再与圆柱对比说明各个部分,明确圆柱表面包括一个侧面和两个相等的圆。

(3)得出公式。

2.教学例2。

出示例2,学生读题。提问:这道题分哪几步来算?你们会做吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说说每一步的具体含义,是怎样算的。

3.组织练习。

做练一练第1题。指名两人板演,其余学生做在练习本上。集体订正,说说这两题计算时有什么不同的地方,为什么?指出:计算圆柱的表面积,要注意题里的条件,正确列出算式计算。

4.教学例3。

出示例3,学生读题。提问:这道题实际是求什么?这里求表面积与例2有什么不同,为什么?(只要用侧面积加一个底面积)指名学生板演,其余学生做在练习本上。集体订正,追问为什么只加一个底面积。强调不用四舍五入法及其理由,说明用进一法,并让学生说明结果的近似值,板书订正。

5.组织练习。

(1)下面的数用进一法保留整数,各是多少?(口答)

162.3 29.4 3.8 42.6

(2)做练一练第2题。让学生做在练习本上。指名口答前两步各求什么,怎样算的。(老师板书算式)提问:第三步要怎样算,为什么只加一个底面积。

这节课学习子什么内容?你学到了些什么?指出:求圆柱表面积在实际应用中,要注意题里的实际情况,弄清什么时候要侧面积加两个底面积,什么时候要侧面积加一个底面积,什么时候只要求侧面积,然后计算结果。另外,在求需要材料取近似数时,一般要用进一法。

课堂作业:练习一第5~7题。

圆柱的表面积教案篇七

理解求表面积、侧面积的计算方法,并能正确进行计算。

能灵活运用表面积、侧面积的有关知识解决实际问题。

1.教师、学生每人用硬纸做一个圆柱体模型。

2.投影片。

一、铺垫孕伏。

1.口答下列各题(只列式不计算)。

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2.长方形的面积计算公式是什么?

3.教师出示圆柱体模型,指同学说出它有什么特征?

二、探究新知。

1.利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)让学生观察议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括出:因为长方形的面积等于长×宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘以高。

2.教学例1。

(1)出示例1,指同学读题,找出已知条件和所求问题。

学生独立解答,并把计算步骤填在课本50页例1下面的空白处,然后订正。

板书:3.14×0.5×1.8=1.75×1.8≈2.83(平方米)。

答:它的侧面积约是2.83平方米。

(2)反馈练习:完成做一做41页第1题。

学生独立解答,然后订正。

3.教学。

(1)教师说明:圆柱的侧面积加上两个底面积就是。

(2)让学生利用圆柱体模型展开图进行比较、区别,从而使学生清楚:是指圆柱表面的'面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

4.教学例2。

(2)指同学读题,找出已知条件和所求问题。

(3)让学生观察圆柱表面积的展开图,并小组议论:让学生理解圆柱表面积的组成部分,再按顺序说出求表面积的具体过程。具体计算由学生完成。

(4)指学生板演,其他同学在练习本上做,并把计算结果填在书上。

教师巡视指导,注意检查学生的计算结果和计量单位是否正确。

做完后订正,订正时让学生说出有关的计算公式。

(5)反馈练习:完成做一做第2题。

指一名学生在小黑板上做,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5.教学例3。

(1)出示例3,指名读题,找出已知条件和所求问题。

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)学生在练习本上做,教师巡视指导,注意检查学生的计算结果。如果发现计算结果是1800平方厘米的让该生上黑板上做。

(4)订正,让板演的学生讲解题的思路和计算结果取近似值的方法。

(5)教师说明:这里不能用“四舍五入”法取近似值。在实际中,制作水桶使用的材料要比计算得到的数多一些,这样才能保证原材料够用。那么保留整百平方厘米时,十位上即使是4或比4小,也要向前一位进1。这种取近似值的方法叫做进一法,所以这题的计算结果应是1900平方厘米。

(6)“四舍五入”法与“进一法”有什么不同。

圆柱的表面积教案篇八

学生的学习水平有差异,在学习中可能会出现有的学生不知道怎么求圆柱侧面积,不会把曲面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合实验操作清晰地表述圆柱侧面积计算方法的推导过程。学生对动手操作较感兴趣,通过探索操作活动,小组合作与自主探究相结合的学习方式,有助于提高学生观察能力、自主探究能力,并发展学生的空间观念及合作学习的能力。

圆柱的表面积教案篇九

1.使学生理解和掌握圆柱体表面积的计算方法,能根据实际情况正确地进行计算,培养学生解决简单的实际问题的能力。让学生认识取近似值的进一法。

2.进一步培养学生观察、分析和推理等思维能力,发展学生的空间观念。

您可能关注的文档