手机阅读

反比例的意义教学设计及反思(实用11篇)

格式:DOC 上传日期:2023-11-21 15:51:01 页码:7
反比例的意义教学设计及反思(实用11篇)
2023-11-21 15:51:01    小编:zdfb

写总结可以帮助我们认识到自己的成长和进步,进而不断提高自己的工作能力。总结应该突出重点,避免泛泛而谈,保持简洁明了。7、读范文可以开阔我们的思路和视野。

反比例的意义教学设计及反思篇一

我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。

生活是数学知识的源泉,正反比例是来源于生活的。

课上学生基本能够正确判断,说理也较清楚。

教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的。

将本文的word文档下载到电脑,方便收藏和打印。

反比例的意义教学设计及反思篇二

教学目的:

1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。2.使学生进一步认识事物之间的相互联系和发展变化规律。3.初步渗透函数思想。

一、谈话导入:

师:咱们一块做几道题判断一下。出示:

1、除数一定,被除数和商。

2、单产量一定,总产量和面积。

3、加数一定,和和另一个加数。

4、每张纸厚度一定,总厚度和纸的张数指名说并说请判断依据。

师:看来大家对正比例知识理解掌握得不错,学完正比例接下来我们该学习什么了?(生答)是啊,有正就有反,这节课我们就来探究反比例的有关知识(板书:反比例)。

二、学习。

师:既然正与反意义是相反的,大家猜想一下,成反比例的两个量的关系是怎样的呢?(生猜想)。

师:到底同学们的猜想是否正确?我们要用事实来验证。独立填写研究单,然后在组内交流。

学生自己填,在小组活动,师巡视学生台前展示交流。

师:对于这句话大家有什么不理解的吗?判断两个量是否成反比例的要点是什么?

指名说,(大屏幕出示红色字)。

师强调:要想判断两个量是不是成反比例,除了要相关联,最重要的一点就是要保证这两个量乘积一定。

出示表格,明确正比例和反比例的异同点。

师:今天我们学习了反比例关系,对于今天学过的内容,大家还有疑问吗?

三、练习。

1、书上51页8、9、10题,独立写,集体交流。

2、书上51页11题,指名交流,说理。

四、总结。

师:这节课你有什么收获?指名说。

师:我们不仅收获了知识,更重要的是运用学过的知识学习了新的内容,掌握了这种学习方法,并且不断反思,不断总结,相信我们会在数学的道路上越走越远。

反比例的意义教学设计及反思篇三

知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。

(一)复习猜想导入,引出问题。

1、成正比例的量有什么特征?什么叫正比例关系?

2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。

达成目标:猜想导课,激发探究愿望。

(二)共同探索,总结方法。

1、明确这节课的学习目标:(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。

2、情境导入,学习探究。(1)我们先来看一个实验。

高度(厘米)。

底面积(平方厘米)10。

体积(立方厘米)。

提问:根据列表,你从中你发现了什么?

(2)学生讨论交流。

(3)引导学生回答:表中的两个量是高度和底面积。

高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。

每两个相对应的数的乘积都是300.(4)计算后你又发现了什么?

每两个相对应的数的乘积都是300,乘积一定。

教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。

教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)。

(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)。

小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?

(6)归纳总结反比例的意义。(7)比较归纳正反比例的异同点。

达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。

(三)运用方法,解决问题。

1、生活中,哪些相关联的量成反比例关系,举例说一说。

2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?

3、出示反比例图像,与正比例图像进行比较学习。

达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。

(四)反馈巩固,分层练习。

判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。

(五)课堂总结,提升认识。

反比例。

高度(厘米)。

底面积(平方厘米)10。

体积(立方厘米)。

300。

300。

300。

300300高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。高×底面积=水的体积(一定)反比例关系式:x×y=k(一定)。

反比例的意义教学设计及反思篇四

我在教学“正比例和反比例的意义”这部分内容着重使学生理解正反比例的意义。

生活是数学知识的'源泉,正反比例是来源于生活的。

其次,能充分尊重学生主体,灵活运用知识,联系生活实际,为学生提供丰富的感性材料,重过程练习。

课上学生基本能够正确判断,说理也较清楚。

教学有法,但教无定法,贵在得法,我认为只要切合学生实际的,让师生花最短的时间获得最大的学习效益的方法都是成功的,都是有价值的。

反比例的意义教学设计及反思篇五

人教版六年制第十二册第42~43页的内容。

二、教学目标。

(一)经历探索两种相关联的量的变化过程,发现规律,理解反比例的意义。

(二)根据反比例的意义,正确判断两种量是否成反比例。

(三)渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

三、教学难点。

正确判断两种相关联的量是否成反比例。

四、教学过程。

(一)情境导入。

1.课前谈话:同学们,你们去过南昌吗?你知道萍乡到南昌需要多长时间吗?(媒体显示:几年前,我乘坐由萍乡开往南昌的k8727次列车需要4小时到达,现在改乘d117次列车,只需2小时5分钟,这是为什么呢?)。

2.学生对上述问题发表意见。

3.师:今天,我们就来研究这种类型的问题。

(二)探索新知。

将本文的word文档下载到电脑,方便收藏和打印。

反比例的意义教学设计及反思篇六

反比例关系和正比例关系一样,是比较重要的一种数量关系,学生理解并掌握了这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的正、反比例方面的实际问题。我就这节课的收获、感悟,简要谈谈:

在教学反比例的意义时,我首先是联系旧知、渗透难点。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,提出自主学习“要求”,让学生主动、自觉地去观察、分析、概括、发现规律。对于学生来说,数量关系并不陌生,在以前的应用题学习中是反复强调过的,因此,学生观察、分析、概括起来是较为轻松的。当学完例1时,我并没有急于让学生概括出反比例的意义,而是让学生按照学习例1的方法学习试一试,接着对例1和试一试进行比较,得出它们的相同点,在此基础上来揭示反比例的意义,就显得水道渠成了。然后,再通过说一说,让学生对两种相关联的量进行判断,以加深学生对反比例意义的理解。最后,通过学生对正反比例意义的对比,加强了知识的内在联系,通过区别不同的概念,巩固了知识。通过这节课的教学,我深深地体会到:要上好一节数学课很难,要上好每一节数学课就更难,原因多多……这节课课前我虽做了充分的准备,但还是存在一些问题。比如练习题安排难易不到位。由于学生刚接触反比例的意义,应多练习学生接触较多的题目,使学生的基础得到巩固,不能让难题把学生刚建立起的知识结构冲跨。

反比例的意义教学设计及反思篇七

通过本次的教学展示,总体感觉自己整节课的教学流程清晰,教师对本节课的两个重点突破较好,学生都理解了比例的意义。

但本节课也存在着一些不足之处:

(1)整节课一味担心自己的教学任务不能完成,对学生放手不够,有牵着学生走的嫌疑。

(2)教师讲解太过仔细,以至拓展练习无法完成。在今后的教学中将加大“放手”力度,多注意培养学生创新思维。

学生是一个个鲜活的个体,知识基础和生活经验各不相同,所以教学中我尽最大努力照顾到所有的学生,使他们每一个人都得到应有的知识和不同程度的提高。

在整个教学过程中,我灵活运用《分层测试卡》这一教学资源,把其中的题目按照难易程度和层次的不同选择性的适时融入教学,为学生理解正比例的意义而服务。

反比例的意义教学设计及反思篇八

本节复习课的主要教学目标是通过系统的整理,让学生加深理解正、反比例的意义,正、反比例的联系与区别及最后运用正、反比例解答生活中的数学问题。

(1)以学生为主。学生自己先整理、交流、汇报,教师只是起着沟通学生和教材的作用。

(2)以课本为主。在复习中,让学生牢固掌握基础知识的基础上,进行拓展,把课本和资料有机结合,使之互为补充,相得益彰。

(3)以课内为主。把问题尽量解决在课堂上。上课前认真作好准备,学生课前进行整理,教师精心准备教案,教学过程中,精讲精练。

(4)以练为主。教师边讲边练,练习由浅入深,由简到繁,体现了基础性、层次性。尤其是最后一题注重一题多解,让学生更多地参与学习过程,让学生学习得更加主动,使他们学会从多角度思考问题,培养学生的发散思维和解决问题的能力。

(5)以提高学生能力为主。学生整理和复习的方法不是很熟练,要求教师在课堂上适时点拨,在学习方法上给予指导。学生在学习中不但要掌握知识,而且要学会学习,这是本课时的一个重要目标。

教会学生学习需要一个长期的过程,需要教师在每一节课中不断的渗透,长此以往,才能正提高学生的能力。

反比例的意义教学设计及反思篇九

本节课内容比较抽象、难懂,学生掌握有一定得困难。怎样化解这一教学难点,使学生有效地理解和掌握这一重点内容呢?我在本课的教学中做了一些尝试。

我从学生身边发掘素材,组织活动,让学生从活动中发现数学问题,从而引入学习内容和学习目标。这就激发了学生学习数学的兴趣,激起了自主参与的积极性和主动性,为自主探究新知较好的创设了现实背景。

在演示的基础上,我又不失时机地组织学生合作学习,讨论、分析,因而取得满意的效果:学生自己弄清了成反比例的两种量之间的数量关系,初步认识了反比例的涵义,体验了探索新知、发现规律的乐趣。

我考虑到例题比较相近,因此要注意学习方式必须加以改变。因此我采取把自主权交给学生方式,营造了民主、宽松、和谐的课堂氛围,因而对例题的学习探索取得了比较好的效果。然后通过例题与例题进行比较,归纳出成反比例的两种量的几个特点,再以此和正比例的意义作比较,猜想出反比例的意义。最后经过验证,得出反比例的意义和关系式。既达成了本课的知识目标,又培养了推理的能力。

反比例的意义教学设计及反思篇十

1.知识与技能。

理解反比例函数的意义;根据已知条件确定反比例函数的解析式。

2.过程与方法。

学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际问题;发展学生的抽象思维能力,提高数学化意识。

3.情感态度与价值观。

经历反比例函数的形成过程,体会数学学习的重要性,提高学生学习数学的兴趣;在学习过程中进行分组讨论,培养学生的合作交流意识和探索精神,体验学习的快乐与成就感。

教学重点。

理解反比例函数的意义;根据已知条件确定反比例函数的解析式。

教学难点。

反比例函数解析式的确定。

教学过程。

一、创设情境,导入新课。

问题1:(课件展示)。

问题2:(课件展示)。

问题3:(课件展示)。

下列问题中,变量间的`对应关系可用怎样的函数关系式表示?

(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化。

(2)某住宅小区要种植一个面积为1000o的矩形草坪,草坪的长y(单位m)随宽x(单位m)的变化而变化。

(3)已知某市的总面积为1.68×10平方千米,人均占有的土地面积s(单位:平方千米/人)会随全市人口n(单位:人)的变化而变化。

二、观察思考,明晰概念。

1.这些关系式都体现了函数关系,它们是我们曾学习过的正比例函数或一次函数吗?

2.这些函数关系式与正比例函数、一次函数有何不同?

3.这些函数关系式有什么共同的特征?

4.各关系式中两变量之间有什么关系?

5.你能归纳出反比例函数的概念吗?

通过回答以上问题,师生共同总结反比例函数的概念。

三、小组讨论,领悟概念。

1.反比例函数关系式中有几个变量?

2.变量之间存在什么关系?

3.反比例函数还有其他形式吗?若有请指出。

4.反比例函数中,变量x、y和常数k有什么具体要求?为什么?

四、内化新知,拓展应用。

1.下列函数中哪些是反比例函数?请指出反比例函数中的k值。

2.已知y是x的反比例函数,且当x=2时,y=6。

(1)写出y与x的函数关系式。

(2)求当x=4时,y的值。

3.当x为何值时函数y=x-2a-4是反比例函数?

4.已知函数y=y1+y2,与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5。

(1)求y与x的函数关系式。

(2)当x=-2时,求函数y的值。

五、课堂练习。

师生共同完成教课书第40页的练习题。

六、课堂小结。

1.通过本节课的学习你对反比例函数有怎样的认识?

2.反比例函数与正比例函数的区别有哪些?

七、作业布置。

教材中本节习题17.1第1、2、4题。

(责任编辑赵永玲)。

反比例的意义教学设计及反思篇十一

我利用了一节课时间进行了对比整理,让学生在比较的过程中发现两种比例关系的异同后,总结出判断的三个步骤:

第一步先找相关联的两个量和一定的量;

第二步列出求一定量的数量关系式;

看来在一些概念性的教学中必要的点拨引导是不能少的,这时就需要充分发挥教师的主导作用,学生的理解能力是在日积月累的过程中培养起来的,教给学生一定解题的技巧和方法能提高教学效率。

您可能关注的文档