拓宽自己的眼界,增加对世界的认识和理解。总结要注重实用性,提供具体可行的建议或改进方案。总结是一个复盘和总结经验的过程,以下是一些值得参考的总结范文,供大家参考。
浅谈小学数学几何图形概念的教学策略论文篇一
根据心理学的实验研究和学校的教学经验,儿童主要通过两种方式获得概念:概念形成和概念同化。前者主要依靠对具体事物的概括获得概念;后者主要利用认知结构中适当的旧概念来理解新概念。随着小学生年级的升高和知识的积累,概念同化逐渐成为他们获得概念的主要方式。概念同化实际是奥苏贝尔的认知结构同化论在概念教学中的应用,本质上是根据学生已有认知结构设计教学,帮助学生形成良好的认知结构,提高概念教学的水平。概念同化虽然不需要经过概念形成过程中所包含的辨别、抽象、分析和概括等相对复杂的心理过程,其关键属性是以定义的形式直接揭示,但是概念的直接揭示不能等同于教学的简单、空洞。要保证学生真正理解概念而不是形式地记住概念,同样需要对这种学习方式的心理机制进行深入探析,寻求有效的策略,精心设计相关教学过程。下面笔者以《认识小数》(苏教版三年级下册第100-101页)为例,谈谈对小学数学概念有效同化策略的一些认识。
策略一:全面探寻已有固定观念。
同化学习就是以学生已有认知结构中的相关概念作为固定点来吸纳、同化新概念,这些相关概念就是固定观念。因为概念之间的联系是丰富的,因而与所学新知相联系的固定观念应该是多样的。同一新知的学习,往往有多个不同的固定观念。这些固定观念从学习时间上来说,有的离新知比较近,有的离新知比较远;从外在特征上来说,有的比较外显,有的比较内隐;从清晰程度来上说,有的比较明朗,有的比较朦胧;从同化作用上来说,有的比较强,有的比较弱。
面对如此复杂而丰富的固定观念,在概念教学中,首先要全面分析同化新概念的固定观念,由近及远,由显性到隐性,并预测其在新知学习中的同化作用,以其同化作用的强弱为主要依据,抓住重点,兼顾其他,组织教学。但在实际教学中,受感知觉中强刺激的影响,人们常常将离学生比较近的、比较外显的、比较明朗的观念作为固定观念,而忽视甚至漠视因时间的延长、记忆的衰退或条件的内隐而变得模糊,但同化作用却比较强的固定观念。例如,对于小数来说,人们很快能将刚学的十进分数作为它的固定观念。但是教学实践表明,如果仅仅用十进分数作为固定观念,教与学总免不了肤浅和生硬。再仔细深究我们就会发现,小数其实是人们对整数的一种仿写——把十进分数仿照整数写成不带分母的形式。显然,整数不带分母的简便书写特性也是小数的固定观念之一。此外,如果我们再进一步思考,为什么十进分数可以仿照整数写成不带分母的形式?我们不难发现,这是缘于整数部分和小数部分都遵循十进制计数法。这样十进制计数法也应该是它的固定观念之一。只是“满十进一”的思想十分隐蔽,是一种隐性的固定观念,在学生学习数学的过程中,这种观念学生很少用语言表达,但却经常不自觉地在使用,应该说这个固定观念缄默而稳定,对理解小数产生,同化小数概念及其运算,都具有极大的作用。
对于这些同化作用特别强,但外在朦胧而隐蔽的固定观念,教学中不仅要充分发掘,而且要尽可能通过复习、重组、改造等方式使之显性化,并使其具有更合理的同化结构。可以说,多种固定观念的多重联系,使学生对小数的产生及其意义获得了通透的理解,有效地促进了小数概念的同化学习。
策略二:架构立体的同化模式。
根据奥苏贝尔的认知同化理论,概念同化应该有三种形式:即下位学习、上位学习、并列结合学习。三种学习模式各有特点:下位学习本质上是一种知识的迁移;并列结合学习需要学习者在已有认知结构中寻找相关观念的潜在的吻合因素即“同构态”,并将这种相同的结构抽象出来,因而并列学习本质上是一种结构迁移;而上位学习本质上是一种更高层次上的认知结构的重组、提升。相比较而言,下位学习的进行比其他两种学习形式要容易一些,因为演绎性获取相对来说要比类比性获取和归纳性获取更省时、省力,且易于保持。
由于数学概念逻辑联系的多样性,概念同化的三种学习模式在数学概念教学中的运用既有分别,更有联系。在概念同化学习中,同一概念的学习往往不能仅靠其中一种模式完成,而必须综合采用两种或三种模式同时作用才能完成。根据新旧知识之间的逻辑联系,可以把各种模式之长有机组合起来,构建最牢固的认知“脚手架”,最大限度地放大已有认知结构同化新知识的内驱力,从而提高概念教学的有效性。
例如,教学小数概念,如果将小数仅仅与十进分数相联系,小数概念的同化模式可以用下图表示:
显然这属于并列结合学习,而且是一种一对一的转换式的并列结合学习。
如果将小数不仅与十进分数,而且与整数、十进制计数法建立起联系,那么同化的模式应是这样的,可用下图表示:
从左面的图式可以看到,引导学生建构小数概念,可以先利用整数的写法和十进分数两个观念的组合,初步建构小数,这是一种组合式的并列结合学习;初步认识小数后,再引导学生比较整数和小数,感悟其共同点——都遵循十进位值制,理解正是它们都遵循十进位值制,十进分数才可以仿照整数的写法,写成不带分母的形式。这样又使学生将新学的小数概念纳入已经十分熟悉且概括性、包摄性更强的十进位值制的思想之下,这又是一种相关下位学习。显然,通过下位学习,能使学生对小数获得更为深刻的理解。这样来看,学生有效同化小数概念的模式应该是并列学习和下位学习的有机组合。其实在前文所列举的教学准备片段中,在建立小数与十进分数联系的同时,笔者又通过引发学生的类推猜想,旨在帮助学生建立不易注意的小数与整数的联系,变单一的并列转换学习模式为网络化的并列组合学习,从而最大限度地扩大新旧概念的“同构态”,使学生对小数概念的认知实现一种结构性的迁移,进而顺利地从购物情景拓展运用到例题的测量情景中。
策略三:逐级提升同化水平。
概念同化的本质就是揭示新旧概念的联系。皮亚杰的儿童智力发展阶段理论认为小学生主要处于具体运算阶段,形式运算能力较差而形象思维活跃。因此,小学数学概念同化学习中,新旧概念联系的复杂性、抽象性决定了学习者对新概念的精确建构不可能一蹴而就,像概念形成一样,也应该遵循由感知——表象——抽象的认识规律。
例如,引导学生认识小数,学生对小数意义的理解,特别是对其中蕴涵的十进位值思想的感悟需要经历一个逐步抽象的过程,需要引导学生的认知结构实现一种渐进式的转换和提升。具体来说可以设计成以下几个环节:
1.情景感知。生活中有两种情况经常用到小数,这就是购物情景和测量情景。本节课是学生第一次认识小数,教材从测量的情景引入,引导学生将测量的结果即不足1米的课桌的长和宽,先用整数表示,再用分数表示,然后在此基础上引入小数。如果从贴近学生的生活实际考虑,应该是购物的情景学生更为熟悉,积累的数的经验也更丰富。因此,有必要在测量情景前增加购物的情景,以此为切入点。像前文列举的准备性教学片段中所述,通过猜想类推,激发学生运用已有的整数、分数、小数等数经验实现对小数的自主建构:小数与十进分数等值,它也是对整数形式的一种仿写。接着,引导学生把购物情景中获得的认知迁移到测量的情景中;然后,借助两种不同生活情景的启示,初步建构纯小数的位值雏型;最后再返回到购物的情景,以纯小数为基础,建构带小数的位值雏型。相机完成教材中“想想做做”第2、4题,初步形成关于小数的数感。
2.数形结合。《九章算术》日:“析理以辞,解体用图。”古往今来,数与形密不可分。数形结合具有双向性,一方面“以形助数”——借助形的生动和直观来阐明数与数之间的联系,形为手段,数为目的;另一方面,以数助形——借助数的简洁性和概括性来提炼事物(图形)的本质,数为手段,形为目的。显然,在认识小数的过程中,给学生提供了实际生活情景后,可以采用以形助数的手段,对小数位值雏型进行形象的解剖和精确的刻画,使小数位值雏型转化为直观的位值模型。教材中“想想做做”第1、3、5题等练习,提供米制直观图以至脱离了具体量的正方形图、数轴图等,这些都是为学生理解小数提供丰富的直观支撑,使学生形成有关小数的清晰表象,为概念的抽象概括提供坚实的基础。
3.抽象概括。在学生根据米尺图、正方形图填写好有关的分数和小数后,引导学生归纳纯小数的本质属性:不管是1元、1米、1个正方形„„只要平均分成10份,那么十分之几都可以用零点几表示;反之,零点几就表示十分之几。在学生填写完数轴上的小数后,适时引导学生观察并思考:从中能发现什么规律?使学生明确:数轴上0-1之间都是零点几;1-2之间都是一点几;2-3之间都是二点几„„从而深化理解带小数的意义。
概念同化的学习方式虽然从本质上说是一种从概念到概念的过程,但是新旧概念之间联系的建立,不是—种简单空洞的逻辑链接,同样需要根据学生的心理特点组织一个生动丰富的学习过程:情景感知——数形结合——抽象概括。只有这样才能使新概念真正在已有的概念体系中“落脚”,获得心理意义。
策略四:同化与分化有机整合。
奥苏贝尔在同化理论的基础上还提出了学习组织的四大原则。其中第一条原则就是渐近分化的原则。该原则主张在学习新知识的同时,明确新旧知识的区别,并使新旧知识的联系与区别协调整合。因此,学生对数学概念的心理建构还应该是—个从同化到分化的过程。当然,根据唯物辩证法的观点,这种分化应该是与其对立面——同化有机统一的过程。在概念同化过程中,如果说同化是寻找新旧概念的共同特征,那么分化就是辨析新旧概念的区别特征。同样,对小学生来说,这种分化也应该是渐进式的。例如,在引导初步认识小数后,可以通过如下两个层次的设计逐步实现新旧概念的精确分化。
1.联系具体量析数。例如对于36.6℃来说,要使学生明确,同样是“6”,前者表示6℃,而后者表示6/10℃。
2.析抽象的数。先出示现代使用的小数,如768.6,然后由近及远,出示远古使用的小数,如6785|4763等,让学生辨析小数部分位值与整数部分的异同,将数学史的介绍与对小数的位值辨别有机结合起来,不仅能实现小数与整数位值意义的分化,而且能极大地调动学生学习的积极性,有效激发学生的数学思维。
总之,上述教学过程实际上是将一直进行的求同的思维过程实施逆转,变求同为求异,变同化为分化,最终实现对十进位值制的进一步建构和对小数意义的深化理解。
浅谈小学数学几何图形概念的教学策略论文篇二
数学新课程改革的制定强调从以获取知识为数学教育首要目标转变为首先关注人的情感、态度、价值观和一般能力的培养,同时使学生获得作为一个公民适应现代生活所必需的基本数学知识和技能。可以说,促进学生的终生可持续发展是学校数学教育的基本出发点。所以,课堂教学中运用什么样的策略指导并开展课堂教学,对教学价值的体现,学生成长的方向,起着至关重要的作用。
爱因斯坦说:"兴趣是最好的老师。"学生只有对所学知识产生了浓厚的兴趣,他才会积极主动地参与到课堂学习中来,充分发挥自己的聪明才智,取得事半功倍的效果。在小学数学课堂中,应采取哪些手段激发学生的兴趣呢?首先,巧设导入语激趣。上课伊始,教师应根据该节课的教学内容、教材重难点,设计一段能引发学生学习兴趣,激发学生思考探究的导人语引入新课,以激活学生学习动力,点燃学生思维火花。其次,设计擂台赛出情趣。小学生表现欲强,爱争强好胜,喜欢受人夸奖。小学数学课堂教学中,教师如能抓住小学生这一年龄特点,有意识地设计竞赛题和竞赛形式,学生会兴致盎然,热情高涨,学习空前活跃。如把基础数学知识或口答题设计成抢答竞赛形式,把中等难度题设计成限时必答竞赛形式,把难度较大的题设计成小数奥赛形式,让学生以赛激趣,以赛促学,以赛提效。总之,在小学数学课堂教学中,教师根据教材内容和学生年龄特征,选用科学灵活的教学手段,不断创新激趣方法,会使数学课趣味盎然,高潮迭起;会使学生在学中玩,在玩中学,学得有趣,学得愉快,学得轻松,学得主动,学得深刻。
教材是落实教学大纲、实现教学计划的重要载体,也是教师进行课堂教学的重要依据。作为一名小学数学教师,善于运用教材是提高教学水平和教学质量的重要保证。第一、领会编者意图,提高驾驭能力。是否领会编者的意图是衡量教师对教材内容理解程度的一个重要标志。教师在教学之前应从小学数学教材的整体入手,通读教材和与之配套的教学参考书,全面了解小学数学教材的编写意图,弄清每部分教材在整个小学数学教材体系中的地位与作用。第二、结合教学实际,适当调整内容。总之,在小学数学教学中,教师既要做到尊重教材,又不局限于教材,同时也要注意改革小学数学教学过程中的不合理因素,对教材内容有所选择、补充或调整,进行教学再加工,从而真正达到优化教学之目的。
"好玩"是孩子的天性,怎样才能让孩子在玩中获得知识呢?我针对每课不同的学习内容,编排设计了很多不同的游戏、故事……如:在上"认识物体和图形"一课时,我让孩子带来了许多物体和图形,先让他们以小组为单位介绍自己带来的物品,后放到一起数一数,看看每种物体、图形各有几个。这样不仅使学生认识了数,还为以后的分类课打好了基础,更培养了孩子的合作学习习惯。
大家都知道本册数学教材的练习题中,有很多题的答案都不是唯一的。这就需要我们抓住时机,鼓励学生多动脑筋,勤思考。刚开始,当我问道:"谁还有不同的方法?"时,很多学生的表情都很茫然,所以这时,只要有学生能通过思考来回答问题,不管他答对与否,我都给与相应的鼓励,表扬他是个爱动脑筋的孩子。给我印象最深的是当我讲《跳绳》这一课时,大多数学生都列算式为:2+6(2个摇绳的,6个跳绳的),这时,有个小女孩却胆怯怯的举起了小手,她列的算式是:4+4,我故作惊讶地问:"你为什么要列成4+4呢?"她说:"有4个小男孩,4个小女孩,共有8个小朋友在玩跳绳。"我当时特别高兴,就借机说:"你真是个爱动脑筋的好孩子,棒极了!"并奖给她一个"智慧果"。然后,我对其他孩子说:"其实通过这幅图还能列出很多不同的算式,谁还能做一个爱动脑筋的孩子?"经过这一启发,学生的思维顿时活跃起来,最后一直深挖到根据衣服、袜子的不同颜色来列算式,甚至更有的学生列出了连加算式。从这以后,在每每拿出一道题,学生都能积极主动去寻找不同的方法来解决问题。可见,只要我们能适时抓住机会,并加以正确引导,相信孩子们是有潜能可挖的。
许多孩子在入学以前就会做100以内的加减法,但是如果把它们拿到具体的生活实际中来就不是那么尽如人意了。数学如果不能与生活有效地联系起来,那就失去了它本身的意义。所以,在数学教学中培养孩子的生活实践能力也是至关重要的'。如:上完《分类》课以后,布置学生到书店、超市等地方进行调查,看看它们是按什么规律把物品进行归类的,之后又让学生带来了各种不同的东西,叫学生扮演。"商场小经理"把各种物品按自己的想法进行归类。这样,使学生在实践中得到了锻炼,把数学真正融入到现实生活,多让孩子动手。小学生以形象思维为主,逐步向抽象思维过渡。把不好操作的转为好操作的,这样更符合孩子的认知规律。老师可和孩子一起做数学游戏,通过有目的的游戏促进孩子在数学认知、空间理解、想象力等方面的发展。例题:有两堆石子,如果从第一堆中取5粒石子放到第二堆中,则两堆的石子数相等,由这个条件你能得出关于这两堆石子的什么判断?这道题显然是开放性的题目,可以让同学们充分发挥想象力。
教师课前准备是否充分直接影响着课堂教学的效果,一个完整、明确的课堂教学目标必定能提高数学课堂教学效果。
这就要求教师在教学内容上合理地确定教学内容的广度和深度。对低年级和高年级的学生要进行区分,由于不同级的思维发展水平不一样,因此相应的教学进度也要区别对待。对教学内容中的重点和难点也要有所区分,这样能够避免在教学时抓不住主要的基本内容,而在次要的或者学生容易接受的内容上多花时间从而达不到预定的教学效果。
反馈,是为了使学生课堂学习的正确认知过程和结论得到及时的强化,使不正确的认知和结论得到及时的矫正。只有恰当时刻和恰当强度的反馈信息才能保证最佳反馈效果,信息反馈过迟,对于纠正大多数学生头脑中的错误来说,基本上是无效的。所以信息反馈的时机选择非常重要。把传统的"教师背着学生改作业"变成课上改,把教师替学生改变成学生自已改,把重点改正本子上的错误变成重点改正学生头脑里知识系统中的错误。教师课堂组织的信息及时反馈,可使教师根据学生的听课反应,及时调节教学方法。学生课内练习的信息及时反馈,可使教师及时调节课外练习的数量和难度,避免机械重复。形成性测试的信息及时反馈,可使教师根据学生的知识缺陷,及时调整教学要求,制订补救方案和措施,从而提高教学效果,使教与学两方面的素质都得到充分地发展和提高。
总之,我们要在教学过程中,根据小学生的心理特点和认知规律,结合小学数学学科特点,采取多种多样、行之有效的形式,努力创设合适的教学情境,充分激发学生的学习兴趣,努力调动学生的学习积极性,让学生的数学素质在和谐、民主、快乐、平等的课堂氛围中得到全面、有效的发展。
浅谈小学数学几何图形概念的教学策略论文篇三
针对小学生的年龄特点和对概念掌握的物点来看,在概念教学中要采用一定的教学策略,以下就略谈我在这方面的点滴体会。
一、从学生的生活经验引入概念。
生活中有许多地方用到了数学,通过实物、教具、学具让学生观察、演示或操作来阐明概念,可以收到良好的效果。如让学生只用一把直尺画一个圆,这对学生来说是一个考验。用圆规学生都能画圆,用一根线固定于一点也能画一个圆,那么为什么要求学生用一把直尺来画圆呢?这就是渗透圆的定义,虽然在小学阶段很多数学概念是描述性的,但也要尽可能的让学生的后继学习更有利于知识建构。通过这样的操作,会在学生头脑中留下这样的表象:圆就是所有到定点距离等于定长的点的轨迹。哪怕学生无法用语言来表述,但是头脑中有了这样的表象对后继知识的学习是相当有利的。
二、以旧概念的复习引入新概念。
一个概念并不是孤立的,它总是处在一定的概念系统中,处在与其它概念的相互联系中,学生的学习都是通过概念同化习得新概念的。学习复杂概念之前,先学习更一般更简单的概念(即上位概念),以这个上位概念作为新概念的的先行组织者,联系学生已学过的有关概念来阐明新概念的是教学的重要方法之一。如利用整除的概念阐明约数与倍数的概念。在公约数与公倍数的概念中,再添上“最大”、“最小”的限制,而得出最大公约数和最小公倍数的概念。
实践表明,用先前的一个概念推导出新的概念,这样的既能使学生较好地理解新的概念,又能使知识结构形成的更完善,学生掌握得更牢固,更重要的是帮助学生树立起联系的思维方法,形成逻辑思维能力。
三、抓住本质,讲清概念。
要使学生理解和掌握概念,关键在于揭示概念的本质特征,也就是反映事物的根本属性及其主要表现,是该事物区别于其他事物或该概念区别于其他概念的根本之处。有些老师常埋怨学生知识学得死,不会灵活运用,究其原因就是学生没有很好地把握概念的本质。如有些学生对平行四边形的认识必须是端端正正,成水平型的,当变换位置后就和他们理解平行四边形的`概念相抵触了,分析造成这种情况的原因和教师提供事例的方式有关,呈现给学生的都是这样固定不变的平行四边形,就使学生不易区别平行四边形的本质属性与非本质属性,而把非本质的属性也纳入到概念的内涵中去。
因此教师要在讲清概念时要十分准确地讲清概念的含义。有些性质、法则和公式中包含着的某些基础概念,办中一个词,但它所表示的含义也是极其明确的,在教学中要特别注意把这些含义准确而清晰地表达出来。抓住关键讲解概念,就能使学生明确新概念的本质属性及它的意义。如在教学分数意义时就要强调“平均分”。
教师还要恰当地讲清概念的运用范围。如2是质数但不能说它是一个质因数,只能说它是某个合数的质因数。又如在用字母表示数时,爸爸的年龄用a表示,小明的年龄用a—28表示,这里a并不能表示任意一个数,而是有一定的范围的。
四、分析比较,区别异同。
有些概念表面看起来有类似之处,实际上似是而非,能过对比本质属性,使学生弄清它们之间的联系和区别,可以加深对概念的理解。如质数与质因数、互质数、数位与位数、整除与除尽等概念十分相似和相近,教学时要通过各种情况的反复比较,指明它们之间的联系与区别,帮助学生掌握概念实质。又如在教学小数的性质——“在小数的末尾添上零或者去掉零,小数的大小不变,”这里“小数的末尾”就不能说成是“小数点后面”,也不能说成是“小数部分”。“末尾”这个概念是“最后”的意思。
在运用对比法教学时,采有变式也是一种很好的方法,能过变式教学可以使学生排除概念中非本质特征,学生能抓住本质特征,才能增强运用概念的灵活性。如在出示几何图形时位置要变化,不要让其“经典式出场”。
当然在使用比较的方法进行教学时,必须在这个概念已经建立得比较清楚、牢固的基础上,再引入其他相关概念进行比较。否则,不仅不会加深学生对概念的理解,反而容易产生混淆现象。
五、启发思维,归纳概括。
有的学生逻辑思维能力差,习惯于死记硬背,做习题时,只能依样画葫芦,遇到问题的条件或形式稍有变化,就束手无策,因此在概念教学中要注意发展学生的智力,培养学生自己去获得知识的能力。如在教学梯形的认识时,可以将平行四边形与梯形放在一起,通过让学生分类的方法来体会到梯形就是只有一组对边平行的四边形。学生经历了这样的探索过程,形成了清晰的概念并提高了解决问题的能力。
六、前后联系,因“时”施教。
教学具有很强的抽象性与系统性。有些概念之间的联系起来十分紧密,后者以前者为基础,从已有的概念引出新概念。有些概念随着知识的逐步积累,认识的逐步深入,而趋向于完善。所以,小学数学系教材按照儿童的认识规律和教学的内在联系,把教学内容划分为几个阶段,每个阶段有每个阶段的不同要求,有每个阶段各自的重点,这就决定了概念教学的阶段性。
如对圆的认识,一年级学生就接触过了,只要在几具图形中能找到圆就行了;到六年级再认识就更深一步了,了解圆的各部分名称和它们之间的关系,并进行求圆的周长与面积的计算教学;到中学阶段还要学圆的有关知识,这时候对的圆的定义是:圆是所有到定点距离等于定长的点的轨迹。又如商不变性质、分数的基本性质、比的基本性质这三个基本性质,形式不一样,但本质属性是相通的。如果不注意前阶段的教学内容和要求,讲后阶段的内容时,就不能把新旧知识有机地衔接起来,融会贯通;如果不了解后阶段的教学内容要求,讲前面的概念就不可能讲到恰在此时当好处,也容易把概念讲死。
七、温故知新,形成系统。
概念形成后,学生要真正地掌握,这不是一朝一夕之功,需要多次反复,通过各种不同形式的练习,不断地巩固与深化,逐步形成系统。由于概念化互相联系着的,当学生掌握了一定数量的概念后,教师应该向学生进一步提示概念之间的联系,以帮助学生有条理地、系统地掌握这些概念。如学过分数后,可指出小数说是十进分数,把小学数概念纳入到分数概念中。一般在讲完一章一节的内容后注意及时引导学生对知识内容进行小结和概念归类,小结归类时需高度概括,简明扼要,条理清楚便于对比和记忆,使之牢固掌握,逐步形成概念系统。
以上所说的是教师在进行概念教学时的一般策略,一家之言,必有偏颇,还望大家批评指正。
浅谈小学数学几何图形概念的教学策略论文篇四
数学教师应当树立生活化的教学理念,掌握生活化的教学方法,将日常生活中的点滴收集到课堂中,让数学课堂摆脱传统数学教学中的死记硬背、不求甚解、囫囵吞枣、人云亦云的教学模式,让生活化的教学方式联系数学课程和学生的实际生活,丰富了原本枯燥的教学内容,使数学教学能够真正源于生活、服务于生活。解决实际问题教学不仅使学生获得了解决解决实际问题的技能和知识,更强调了数学在实际生活中的应用,增强了学生在日常生活中应用数学知识意识,使学生不仅获得了知识上的提高,也获得了情感和操作技能和应用技能上的进步。在小学解决实际问题教学的过程中,通过对解决实际问题教学目标的整合与平衡,是充分发挥解决实际问题教学作用的重要手段。
生活化的教学方法将源于生活、高于生活的数学知识融入数学教学之中,真正提高了学生的`数学应用能力,在数学教学中完美地融入了素质教育。随着新课改的推进和素质教育在我国的普遍推广,生活化方式的学习和教学方法受到广大教师的青睐,并在实际课堂中得到了大量的应用。学以致用是教育的目标,教师在给学生传授知识的同时要通过潜移默化的引导,使学生学会用所学知识解决生活中的实际问题,而不是仅仅学会了解答考试题。
通过生活化的教学方式使学生在学习数学知识的同时,享受用数学知识分析、解决生活中的实际问题带来的成就感和乐趣,是生活化的教学方式给学生带来的不一样的感受。要在小学解决实际问题教学中体现生活化,首先应当设置生活化的解决实际问题。教师在日常做题训练和考试中,设置解决实际问题时不能简单的抄袭或引用题库或其它解决实际问题,而应当根据学生生活中接触到的实际设置相应的解决实际问题,要想充分发挥解决实际问题在生活化进程上的功效,教师应当充分观察实际生活、观察学生生活中的点滴,设计符合学生生活现实的解决实际问题。
从解决实际问题的内容、解决实际问题的题干和答案都应当充分考虑学生实际生活中的内容。在小学解决实际问题教学中,许多题型通常涉及一些学生生活中没有的或不符合生活现实的问题,阻碍了解决实际问题在学生情感上的认知和认同。例如一次小学数学考试试卷中的解决实际问题小明坐公交车从甲地到丙地,他先从甲地到乙地,坐了五站公交车,后从乙地到丙地坐了六站公交车,问小明从甲地到丙地一共坐了几站公交车?这是一个很简单的意在应用加法的解决实际问题,在城市生活的学生很容易得出答案,但是在农村生活的学生对公交车的概念不是很清楚,对公交车的站也不是很理解,因此,不能得出正确的答案和有效的理解。通过这样的题实现生活化的目标也无从谈起。
小学数学教学是引导学生从最简单、最基本的数学知识学习的阶段,教师通过解决实际问题的形式将生活中的实际融入数学中,可以提高学生学习数学的兴趣,可以是生活化的目标在数学解决实际问题教学中得到更好的体现。为了增强数学课程在实际生活中的应用,为了诱导学生主动参与数学课程的学习,提高学习数学的兴趣和增强课堂的参与程度,提高学生的数学应用能力和理论联系实际的能力,培养学生用数学理论解决实际生活问题的技巧,教师在进行数学教学的过程中有必要将生活中的实际问题引入到枯燥乏味的数学理论之中,使纯理论的数学知识和数学过程变得生动、具体和直观,使同学们增强学习数学的兴趣,理解数学在生活中的实际应用,利用数学解决生活中的实际问题。
总之,所谓解决实际问题,就是要充分体现应用的特征,应当将实际生活或生活化的内容在解决实际问题教学中充分体现,因此,在小学数学的解决实际问题教学中,如何充分发挥解决实际问题的特征和教学特点,将生活化的内容融入解决实际问题教学之中是当前教学改革推进过程中的要点。
浅谈小学数学几何图形概念的教学策略论文篇五
在小学如何确定或选择应教的数学概念,是一个复杂的问题。根据我们的经验,在选定数学概念时既要考虑到需要,又要考虑到学生的接受能力。
(一)选择数学概念时应适应各方面的需要。
1.社会的需要:主要是指选择日常生活、生产和工作中有广泛应用的数学概念。绝大部分的数、量和形的概念是具有广泛应用的。但是社会的需要不是一成不变的,而是常常变化的。因此小学的数学概念也应随着社会的发展适当有所变化。例如,1991年我国采用法定计量单位后,原来采用的市制计量单位就不再教学了。
2.进一步学习的需要:有些数学概念在实际中并不是广泛应用的,但是对于进一步学习是重要的。例如质数、合数、分解质因数、最大公约数和最小公倍数等,不仅是学习分数的必要基础,而且是学习代数的重要基础,必须使学生掌握,并把它们作为小学数学的基础知识。
3.发展的需要:这里主要是指有利于发展儿童的身心的需要。例如,引入简易方程及其解法,不仅有助于学生灵活的解题能力,减少解题的困难程度,而且有助于发展学生抽象思维的能力。在我国的小学数学中,教学方程产生了很好的效果。小学生不仅能用方程解两三步的问题,而且能根据问题的具体情况选择适当的解答方法。这里举一个例子。
要求五年级的一个实验班的38名学生(年龄10.5―11.5岁)解下面两道题:
学生能用两种方法解:算术解法和方程解法。用每种方法解题的正确率都是91.7%。下面是两个学生的解法。
一个中等生的解法:
一个下等生的解法:
多少米?
这道题是比较难的,学生没有遇到过。结果很有趣。58.3%的学生用方程解,41.7%的学生用算术方法解。而用方程解的正确率比用算术方法解的高22%。
下面是两个学生的解法。
一个优等生用算术方法解:
一个中等生用方程解:
解:设买来蓝布x米。
(二)选择数学概念时还应考虑学生的接受能力。小学生的思维特点是从具体形象思维向抽象逻辑思维过渡。一般地说,数学概念具有不同程度的抽象水平。在确定教学某一概念的必要性的前提下还应考虑其抽象水平是否适合学生的思维水平。为此,根据不同的情况可以采取以下几种不同的措施:
1.学生容易理解的一些概念,可以采取定义的方式出现。例如,在四五年级教学四则运算的概念时,可以教给四则运算的定义,使学生深刻理解四则运算的意义以及运算间的关系。而且使学生能区分在分数范围内运算的意义是否比在整数范围内有了扩展,以便他们能在实际计算中正确地加以应用。此外,通过概念的定义的教学还可以使学生的逻辑思维得到发展,并为中学的进一步学习打下较好的基础。
2.当有些概念以定义的方式出现时,学生不好理解,可以采取描述它们的基本特征的方式出现。例如,在高年级讲圆的认识时,采取揭示圆的基本特征的方式比较好:(1)它是由曲线围成的平面图形;(2)它有一个中心,从中心到圆上的所有各点的距离都相等。这样学生既获得了概念的直观的表象,又获得了其基本特征,从而为中学进一步提高概念的抽象水平做较好的准备。
3.当有些概念不易描述其基本特征时,可以采取举例说明其含义或基本特征的方法。例如,在教学“量”这概念时,可以说明长度、重量、时间、面积等都是量。对“平面”这个概念可以通过某些物体的平展的表面给以直观的说明。
数学概念的编排,在一定程度上可以看作是各年级对数学概念的选择和出现顺序。数学概念的合理编排不仅有助于学生很好地掌握,而且便于学生掌握运算、解答应用题以及其他内容。根据教学论和我们的实践经验,数学概念的编排应当符合下述原则:既适当考虑数学概念的逻辑系统性又适当考虑学生认知的年龄特点。为了贯彻这一原则,必须考虑以下几点。
(一)采取圆周排列:这一点不仅反映人类的认知过程,而且。
符合儿童的认知特点。如众所周知的,自然数的认识范围要逐渐地扩大,“分数”概念的意义也要逐步的予以完善。
(二)注意概念之间的关系:例如,小数的初步认识宜于放在分数的初步认识之后,以便于学生理解小数可以看作分母是10、100、1000……的分数的特殊形式。把比的认识放在分数除法之后教学,会有助于学生理解比和分数的联系。
(三)概念的抽象水平要符合学生的接受能力:例如,在低年级教学减法的含义,是通过操作和观察使学生理解从一个数里去掉一部分求剩下的部分是多少。而在高年级教学时,宜于通过实际例子给出减法的定义。在低年级教学平行四边形时,只要说明其边和角的特征而不教平行线的认识。但在高年级就宜于先介绍平行线,再给出平行四边形的定义。
(四)注意数学概念与其他学科的配合:数学作为一个工具与其他学科有较多的联系。有些数学概念,如计量单位、比例尺等在学习语文和常识中常用到,在学生能够接受的情况下可以提早教学。
小学生的数学概念的形成是一个复杂的过程。特别是一些较难的数学概念,教学时需要一个深入细致的工作的长过程。根据数学的特点和儿童的认知特点,教学时要注意以下几点。
(一)遵循儿童的认知规律,引导学生抽象、概括出所学概念的本质特征。例如,在低年级教学“乘法”这个概念时,可以引导学生摆几组圆形,每组的圆形同样多,并让学生先用加法再用乘法计算圆形的总数。通过比较引导学生总结出乘法是求几个相同加数和的简便算法。教学长方形时,先引导学生测量它的边和角,然后抽象、概括出长方形的特征。这样教学有助于学生形成所学的概念并发展他们的逻辑思维。
(二)注意正确地理解所学的概念。教学经验表明,学生对某一概念的理解常常显示出不同的水平,尽管他们都参加同样的活动如操作、比较、抽象和概括等。有些学生甚至可能完全没有理解概念的本质特征。这就需要检查所有的学生是否理解所学的概念。检查的方法是多样的,其中之一是把概念具体化。例如,给出一个乘法算式,如3×4,让学生摆出圆形来说明它表示每组有几个圆形,有几组。另一种方法是给出所学概念的几个变式,让学生来识别。例如,下图中有几个长方形摆放的方向不同,让学生把长方形挑选出来。
此外,还可以让学生举实例说明某一概念的意义,如举例说明分数、正比例的意义。
(三)掌握概念间的联系和区别。比较所学的概念并弄清它们的区别,可以使学生深刻地理解这些概念,并消除彼此间的混淆。例如,应使学生能够区分质数与互质数,长方形的周长和面积,正比例和反比例等。在教过有联系的概念之后,可以让学生把它们系统地加以整理,以说明它们之间的关系。例如,四边形、正方形、长方形、平行四边形和梯形可以通过下图加以系统整理,以说明它们的关系。
通过概念的系统整理使学生在头脑中对这些概念形成良好的认知结构。
(四)重视概念的应用。学习概念的应用有助于学生进一步加。
深理解所学的概念,把数学知识同实际联系起来,并且发展学生的逻辑思维。例如,学过长方体以后,可以让学生找出周围环境中哪些物体的形状是长方体。学过质数概念以后可以让学生找出能整除60的质数。
我们的实验表明,由于采取了上述的措施,学生对概念的理解的正确率有较明显的提高。下面是19xx年进行的一次测验中有关学生掌握数学概念的测试结果。
注:1.两个实验班都是五年级,年龄是11―12岁。一个对照班是五年制五年级,另一个是六年制六年级。
2.1991年用同一测验测试全国约200个实验班,也得到较好的结果。
上面的测试结果表明,实验班学生学习数学概念的成绩,在认数、几何图形,特别是在学习倒数、比例和扇形方面都优于对照班的学生。最后一项测试结果还表明,实验班学生在发展空间观念和作图能力方面优于对照班学生。
四结论。
在小学加强数学概念的教学对于提高学生的数学概念的认知水平具有重要的意义。
在小学如何确定教学的`数学概念是一个重要的复杂的问题。在选定概念时,既要很好地考虑需要,又要很好地考虑学生的接受能力。
合理地安排数学概念对于学生掌握他们有很大帮助。在编排概念时,既要充分考虑所教概念的逻辑系统性,又要照顾到不同年龄的学生的认知特点。
教学的策略对于形成学生的数学概念起着重要的作用。在教学概念时教师应当遵循儿童的认知规律和激发学生思考的原则,并且注意使学生正确理解概念的义,掌握概念间的联系和区别,并在实际中应用所学的概念。
(本文是1992年向第七届国际数学教育会议提交的论文,曾在大会第一研讨组上宣读。)。
浅谈小学数学几何图形概念的教学策略论文篇六
小学数学教学三维目标之一是知识和技能的掌握,其中重要的一块内容是概念的学习,这也是人类思维的基本形式。“空间与图形”中几何概念的学习是小学数学概念教学中的一块重要内容,由于学生的认知特点以及这类概念自身的复杂性、抽象性等特点,学生学习此类概念有一定的困难。我校教师根据课堂教学进行分析调查,发现许多教师往往忽视概念的形成过程,把一个新的概念和盘托出,让学生死记硬背法则、定义。概念的本质揭示不透彻,导致学生透彻地理解掌握概念存在一定的困难,只会照搬照抄,不会灵活应用。面对概念教学的现状,为提高概念教学的有效性,我校2010年开展《小学数学概念教学有效性案例研究》课题研究,于今年6月顺利结题。
一、提供丰富的感性材料,建立概念的表象表象是感性认识的一种高级形式,它是从具体感知到抽象思维的过渡和桥梁,是形象思维的基础。影响几何概念学习的因素之一就是感性材料和感性经验的数量与质量。感性材料和感性经验太少或不典型,学生的感知就会不充分或者不准确,表象也就不可能丰富,甚至会建立错误的表象,也就难以抽象出概念的本质属性。笔者认为,有效的几何概念教学就是要给学生提供丰富的感性材料,帮助学生把握住几何概念的本质属性,剔除其非本质属性,引导学生建立该概念正确的表象,促进几何概念的有效建模。
首先,提供的感性材料要注意形式上的充足性。如教学“认识长方体、正方体”时,我们可以引导学生观察几组对比鲜明的长方体实物:大小悬殊的长方体;空心和实心的长方体;质地不同的两个长方体;颜色不同的,等等。通过观察,然后进行抽象概括,撇开材料、大小、颜色等非本质属性,而只注意它本身的形状,从而明确了这些物体都是长方体。
其次,提供的感性材料要注意内容上的完整性。如教学“角的初步认识”时,既要让学生感知直角、锐角、钝角等不同种类的角,又要注意变化角的大小和角的开口方向,这样才能获得对角的清晰认识。
再次,提供感性材料时要注意方法上的多样性。例如,在《三角形的认识》一课中,给学生提供了一些正确和非正确的感性材料让学生去辨别,并在逐步判断的过程中帮学生完善对概念内涵的理解,形成正确的表象。
二、利用生活原型,构建概念的数学模型《数学课程标准》强调:“数学学习内容应当是现实的、有意义的、富有挑战性的。数学教学要从学生已有的生活经验和知识出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程”。因此在几何概念教学中,笔者将“新知识”与“现实生活”密切联系,寻找生活原型的教学策略,尽可能地将数学学习内容“生活化”,利用生活原型帮学生建立表象,并且消除生活原型对学习数学模型的负面影响。例如,学生在学习高的概念时,内心很难颠覆自己在生活中建立的关于高的表象――“像楼房那样矗立的就是物体的高”。可让生活原型为学习数学模型服务,消除高的生活原型对数学模型的负面影响,实现从生活原型向数学模型的质的飞跃。
首先,创设比“哪座山高一些”的情境,从学生在生活原型中积累的“水平为底、竖直为高”入手,引导学生区分高与边的不同,让学生知道山的高度不是其坡长,而是指山顶到山脚的垂直高度,初步让学生意识到“高”必须和“底”是互相垂直的,又为进一步建立高的数学模型埋下了伏笔。
随后,在学生比较两个三角形究竟谁高一些的时候,会不由自主地把自己观察到的水平(或近似水平)的那条边当成底,把与自己竖直相对的确定为高,从这里引入了数学上对高的研究。当学生借助生活原型来解决谁更高一些的时候,出现了冲突:究竟是哪一个高一些?学生通过辩论知道:观察的角度不同,选择不同的底边时,出现的高就不一样了。让学生体会到几何模型中高的相对性和多样性。
再接着,让学生不转动三角形画指定的高。这个操作活动促使学生从“水平方向为底、竖直方向为高”这一生活原型中,抽取“互相垂直”这一本质特征,特别是让学生在“非水平方向的底”上作出“非竖直方向的高”,这就排除了生活原型对数学模型的负面干扰,帮学生确立了关于高的正确的表象――“与底边互相垂直的都是三角形的高”,成功地从生活原型中的“竖直为高”过渡到了对高的本质认识。
这样的教学既利用了生活原型,又成功消除了生活原型对概念学习的干扰,深化了概念理解,体现了数学模型源于生活原型、又高于生活原型的特质,实现了由生活原型向数学模型的成功飞越。
三、组织有效的动手操作,促进概念的形成。
著名的心理学家皮亚杰说过:“儿童的思维是从动作开始的,切断动作与思维的联系,思维就得不到发展。”可以说实际操作是儿童智力活动的源泉。因此,在几何概念引入过程中,教师应以活动操作为切入点,指导学生做到眼、耳、手、口、脑并用,让学生主动地探索新知,发展思维,促进概念的形成。
现在的许多教师在几何概念教学时也知道要进行操作,但只把学生当“操作工”看待,不能做到由操作到理性飞越的操作,这样的操作是无效的。操作只有放在学生认知的结点处进行,只有让学生的思维紧贴着操作的历程,才能成为打开学生思维的钥匙,这样的操作才是有效的。
1、把握时机,在学生认知结点处操作。心理学研究表明,儿童的认知结构类似于一个倒置的圆锥形的螺旋图。毫无疑问,这个认知螺旋中布满了很多的结点,这些结点就是认知的生长点,它起着承上启下的作用。例如在执教《三角形三边的关系》一课时,学生根本想不到要用两边之和与第三边比较,认为三根小棒就一定能围成三角形。在学生的这个认知结点上,笔者不失时机地给了学生第三根小棒,让学生去围,当学生发现无法围成时,他们积极地去思考了其中的原因,很快发现是第三根小棒太长了,再问学生:是和谁比较太长了?学生对这一问题显得很茫然,在这一认知结点上笔者让他们带着这个问题再次操作,学生在操作中很快发现是和另两根小棒的和比较太长了。显然,当这些结点正在生长时,我们让学生实施动手操作,手脑并用,就能起到事半功倍的效果。
2、定向操作,让概念的形成水到渠成。为了确保操作的实效性,不流于形式,在操作活动中还需要教师定向的指导。首先是要有明确的指导语,使学生知道“做什么”和“怎样做”。其次是根据需要配以教具演示与必要的启发、讲解,展现操作的程序及其内在逻辑性。有时,还可采取分步定向指导,逐渐完成操作的策略,以求实效。
如在执教《三角形三边的关系》时,让学生用3厘米、5厘米和10米的小棒围三角形,在操作失败后引起学生的认知冲突:明明是件很简单的事情,幼儿园时一围就成,怎么现在就围不成呢?从而引发学生思考。当学生发现不能围成三角形的原因是第三根小棒是与3厘米和5厘米的和比较太长了时,不失时机地问学生:为什么是把3厘米和5厘米的和与10厘米做比较?学生发现在操作的过程中是把3厘米和5厘米长的小棒放在10厘米长的小棒两端向中间搭,这时搭不着,从而为后面学生从操作中抽象出结论的思考指定了方向(是拿两条边的和与第三边做比较)。接下来继续问:10厘米的小棒太长了,那么你们认为几厘米长的小棒就一定能和厘米的小棒围成三角形?从而让学生知道接下来的操作中只需把10厘米的小棒换成较10厘米短的小棒。这些为学生接下来的多次操作活动指明了方向,让概念的形成水到渠成。
让学生在动手操作中发现问题并解决问题,顺着学生的思维走,教师灵活把握。让学生通过有效的操作,在多种数学活动中去经历概念形成的过程,逐步建立表象,促进概念的形成。
四、提炼概念的关键词,理解概念的内涵。
一般而言,几何概念是用来揭示空间图形本质属性的确切而精炼的数学术语。其语言具有严密的逻辑性和高度的概括性。要使学生对比较抽象的几何概念有完整、深刻的理解其内涵,必须深刻剖析定义,帮学生把握定义中的关键性词语。
在教学《三角形的认识》一课的时候,让学生用自己的话说出有三个角、有三条边、有三个顶点的图形叫三角形,再让学生观察判断一组图形是不是三角形。层层递进,让学生在观察、讨论中去提炼三角形概念中的关键性词语:三条线段。对于“围成”这个关键词,因为高度的凝练性很难在学生中自然生成。为了帮学生建立围成的表象,笔者进行了联系生活实际的一个比方:“如果你家里有一群羊,夜晚的时候,你会把羊群赶进哪个羊圈里去?”并告诉学生当图形没有首尾相连时就不能称得上是“围成”。这样,帮学生理解“围成”这个关键词并顺利地提炼出。当学生找出了这几个关键词时,这个概念的准确揭示就显得呼之欲出、水到渠成了。
在教学概念时,我们可以指导学生抓住概念的要点和关键性的字词来进行,有的教师还要求学生用红笔给这些关键词加上着重符号,以强化注意。笔者还赞同有的教师让学生读概念时,把关键词读得重一些的做法。这样,学生既能深刻理解概念的内涵,又可以提高记忆效率,收到事半功倍的效果。
五、运用恰当的变式,把握概念的本质。
所谓变式,是指将概念的正例(一切符合概念范围的具体实例)加以变化,提供的事例或材料不断地变换呈现形式,改变非本质属性,使本质属性“恒在”,借此可以帮助学生准确形成概念,防止学生片面的理解概念。由于概念所指的对象除了具有相同的本质属性以外,还会在非本质属性方面有不同的表现,在几何形体概念的教学中,我们可以充分运用变式让学生透过现象看到本质,排除无关特征,真正有效掌握概念。
例如,在平行四边形的认识教学中,通过改变图形摆放的形式,或改变图形角的大小和邻边的长短,或改变图形的本质属性(如对边相等但不平行)等,学生在判断和说理的过程中进一步认识了平行四边形一般图形表象所表征的意义。再如在梯形的概念教学时,通过变换梯形摆放的位置、方向、角的性质等非本质属性,突出梯形“只有一组对边平行的四边形”这一本质属性,学生认识了梯形的各种表现形式,留在脑中的梯形表象将更加鲜明、准确,理解将更加深刻、概括。再通过梯形的反例,故意变换“只有一组对边平行”为两组对边分别平行,从梯形到质变为平行四边形,从而突出了梯形“只有一组对边平行”的本质属性;最后变换“四边形”为“五边形”,从而突出梯形是四边形的本质属性。
浅谈小学数学几何图形概念的教学策略论文篇七
小学数学几何的教学在《数学课程标准》中属于“空间与图形”的领域,而“空间与图形”作为小学数学四大内容领域之一。其教学内容很丰富,主要涉及现实世界中的物体、几何体和平面图形的形状、大小、位置关系及变换,它是人们更好地认识和描述生活空间并进行交流的重要工具。因此,发展儿童的空间观念是小学的空间几何教学的一项重要任务。要落实这项任务,我认为如下的一些教学的组织策略可能是比较有效的。
一、注重儿童的生活经验。
对儿童来说,尤其是对低年级段的儿童来说,通过操作与协调行为已经建立的经验是学习几何知识的起点,是发展他们空间观念的基础。在儿童生活的现实空间中有着许多的几何图形,儿童在自己的游戏活动的过程中可能已经积累了一定的几何经验,如他们在用各种形状的积木搭一个“人”时,已经注意到了积木的形状的区别,他们会用“圆球”形状的积木来做人的脑袋,用长方体形状的积木来做人的肢体,而用圆柱体形状的小棒来做人的四肢等等。又如,让他们用积木搭一把椅子时,他们会注意到凳子的四条腿的长度要一样。而他们在搭建房屋的时候,会注意到某些地方的对称性。
操作中通过尝试来对直观的物体对象进行一定意义的重构。比如,给定学生一个图形,可以让学生用火柴棒来重构一个相同形状的图形,可以加深他们对图形形状特征的感觉。又如,给定学生一些不同形状的图形,让学生按自己的理解去分类,而不同的分类就显示着他们对对象形体特征的表征系统的建立,有利于学生去进一步概括图形的性质特征。
二、观察对象的形体特征是基础。
认识几何图形的性质特征是形成空间观念的基础,而儿童获得几何图形的性质特征的认识,往往是从对具体对象的观察开始的。通过观察,儿童才有可能建立有关图形的形状特征,才有可能认识图形的性质特征,才有可能了解图形性质之间的关系。
观察是一种多样化和多侧面的活动,儿童在几何学习中的观察活动,从其对象看,有不同的侧面:
有的是观察直观的几何模型,目的是通过对模型的观察来帮助学生形成对象的性质特征的认识。如,通过对圆柱体模型的侧面展开,学生可以发现它是一个长方形,而圆柱体的底面则是一个“圆”,这就为学生了解并计算圆柱体的表面积打下了基础。又如。通过对实物的观察,要让学生发现长方体12条棱的性质特征可能并不容易,但是,如果通过由多媒体建立的模型,采用“动漫”的方式将同方向的“棱”运动到一起,性质特征的观察就容易多了。
有的是观察对几何模型的操作演示,目的是通过对对象的多种组成要素的分析来帮助学生构建对对象的本质以及对象间性质关系的认识。如,通过对平行四边形的割补过程的观察,让学生发现,不改变图形的大小,可以将一个图形转化为另一个图形。
三、强化动手操作。
儿童的几何不是论证几何,更多的是属于直观几何,而直观几何就是一种经验几何或实验几何,因此,儿童获得几何知识并形成空间观念,更多的是依靠他们的动手操作。儿童在这个过程中,是通过不断地尝试搭建、选择分类、组合分解等活动来增加自己的体验,积累自己的经验,丰富自己的想象的。
四边形、梯形或三角形等面积计算方法,则是通过对图形的割补来推得的,而不是依据几何的公理体系,通过严格的逻辑推理而或等的。
四、丰富的想象和有效的交流。
儿童的几何语言是在学生对图形的操作实验等活动后,通过对话与交流而逐步发展起来的。能正确运用几何语言是几何概念形成的一个重要的标志,也是进行空间思维的基础。几何语言的学习是不能单凭概念的传递来实现的,对儿童来说,往往需要通过他们在尝试和自我修正的过程中逐步得以发展。因此,有一个策略是值得借鉴的,那就是“表述法”,如“图形描述法”,就是先让一个学生观看某一个图形,然后让这个学生通过描述的方式(就是不能讲出这个图形的名称),讲给另一个学生听,使另一个学生在理解的基础上将这个图形用作图的方式再重构出来;再如“方位描述法”,就是先让一个学生观察某一个对象的位置,然后用描述的方法讲给另一个学生听,使另一个学生能很快地找到指定对象的空间位置。
总之,小学数学的几何学习,对于儿童来说,不仅仅要学习几何知识,更重要的是要能有效地促进他们的空间观念的发展和空间能的逐步提升。
浅谈小学数学几何图形概念的教学策略论文篇八
当前,在小学教学课程中,数学是一门综合性较强的学科,结合了思维理解和逻辑推算等方面的学习能力,时常会使部分学生在学习上感到十分困惑,难以理解数学内容。同时,信息技术在教学方面具有较为重要的作用,能够对教学活动进行一定的创造性设计,促进教学质量的提升,提高学生的学习能力。因此,如何运用多媒体信息技术在数学难点教学上的优势是各大学校首先应当解决的问题,下面主要介绍了信息技术在小学数学教学过程中的主要应用,希望以此增强人们对信息技术在教学活动中的优势给予一定的关注。
一、采用多媒体信息技术提高学生的学习兴趣。
在小学数学教学的过程中,对教学内容进行有趣及生动的讲解可以在一定程度上提升教学效果。为了提升学生学习数学知识的综合水平,教学内容的正确导入是教学过程中一个重要的环节,可以提升学生的学习兴趣。对于小学生来说,枯燥单调的数字游戏并不能激发学生的学习热情,因此教师应结合一定的信息技术设备开展合理有效的教学课程。对于数学中难点教学的知识内容,教师可以采用多媒体信息技术设备对教学内容进行一定的展示,为学生提供一个形象、具体的教学效果。通过对教学内容进行直观的认识与了解,可以加深学生对数学学习的兴趣。例如,数学教师在教学数字相加、相减的内容时,为了使学生更好地掌握数学知识的规律,教师可以运用多媒体的良好功能,采用卡通人物的个数来表示数字,相加即运用动画效果加入卡通人物,相减即卡通人物消失。在教学内容上引入卡通人物,即使教学内容更加生动、具体,又能使学生产生浓厚的学习兴趣,对小学生数学知识的学习有着积极的作用与影响。
二、采用多媒体信息技术提升学生的探究意识。
在现代的教学实践中,自主探究是一种创新型的学习方法,对于教学的开展有着至关重要的作用。在小学教学过程中,学生不仅要理解教材中的基本内容,还应扩展课外知识的学习,加深对教学知识的认识与理解,而课外自主思考与动手实践能在一定程度上起到积极的影响作用。但是在实际探究过程中,学生时常会受到多方面因素的限制,从而阻碍了教学实践的开展,此时结合多媒体设备即可以开展有效的实践活动。在实践过程中,多媒体技术可以对实践资源进行完善的整合,使学生对内容有着清晰的认识,如利用word、excel、ppt等信息技术可以对知识进行合理的分类,再通过在多媒体上进行思路展现,从而更加利于学生开展自主探究实验。
三、采用多媒体信息技术推动学生的合作学习。
在小学数学教学过程中,推动学生之间的合作学习不仅有助于学生对数学难点的有效掌握,还可以加强学生之间的交流与沟通,提升学生的人际交往能力与沟通能力,对于学生的综合性发展有着重要的促进作用。利用多媒体信息技术开展学生合作活动,可以推动实践学习的有效开展,此时多媒体技术的优势主要表现在合作学习内容的收集和开展合作活动的平台等方面上。例如,学生在开展合作活动时,针对特定的主题,可以在互联网设备上查找到丰富的学习资源,这为学生的合作学习提供了一定的帮助;另外,在合作学习过程中,多媒体技术设备可以将合作的主题、任务的分配等内容进行一定的展示,使学生明确教学合作学习,促使学生在合作中开展良好的分工与交流。同时,对于学习任务的重点及难点内容,教师也可以在多媒体设备上进行一定的陈列,通过分类展示,可以提升学生合作学习的效果。
四、采用多媒体信息技术实施学生的自我检测。
在社会经济不断发展的时代下,多媒体信息技术在教学领域中的不同方面都有着广泛的运用,其中的一个普遍运用即是多媒体设备可以开展有趣的课堂练习。在传统的数学教学课堂中,大都是教师在讲台上进行单一的讲解,而学生则是坐在位置上聆听课堂内容。传统式的教学课堂缺乏一定的学习氛围,而且忽视了学生在课堂上的主体地位。因此,在现代化的教学课堂中,教师应充分运用多媒体的教学优势,改变传统式的教学模式,认识到学生在数学课堂中的地位,进一步提高课堂教学的质量。例如,教师可以通过多媒体设备的运用,设置有趣的课堂练习,其中让学生上讲台当一次“小老师”就是有效的教学方法。这样不仅需要学生对教学内容具备充分的认识,同时也要提升学生对多媒体技术运用的掌握程度,使学生感受到信息技术的优越性,激发学生的学习兴趣,从而活跃了教学课堂,促进学生创新意识的培养。综上所述,在小学数学难点教学的过程中,信息技术在其中具有重要的作用,其不仅可以有效地提高学生的学习能力,还可以促进教学质量的提升,为教育事业的发展奠定了一定的基础。因此,在日常教学活动中,教师应充分认识到信息技术的优势,并结合数学学科的教学内容实现创新型的教学环境,使小学数学教学内容更加丰富多彩。
浅谈小学数学几何图形概念的教学策略论文篇九
数学概念教学,是课堂教学的重要组成部分,也是数学教学的核心。在课堂教学中探讨概念教学,其实就是在探讨数学教学的本质,也就是在研究如何抓住数学教学的牛鼻子。在初中数学教材中,概念多而分散,死记硬背显然是不可取的。那么,在课堂教学中如何让学生理解和掌握概念呢?下面结合自己的教学实践谈点体会。
一、联系生活,探究概念的形成过程。
数学来源于生活,生活为数学教学提供了丰富的素材。在数学概念教学中,教师应从学生的认知发展水平和已有经验出发,创设问题情境,使学生经历观察、猜测、交流、验证、反思等活动感知概念,激发学生的学习兴趣和探究欲望。概念是对生活现象的提炼,让学生在生活情境中体验概念形成与发展的过程,能够帮助学生理解和掌握概念,也能够使学生的思维能力得到提高。例如,在讲“圆”时,对于圆的概念,教师可以让学生从生活中找出圆的实例,如车轮、奥运五环等,并提出问题:为什么车轮要制作成圆形?这样的问题,激发了学生的探究热情。在探究中,学生可以发现:圆,“一中同长”,把车轮制作成圆形可以保证车轴与地面的距离始终相等,从而确保车辆在行驶的过程中保持平衡。在此基础上,学生使用圆规画出一个圆,可以得出:平面上到定点的距离等于定长的所有点组成的图形叫作圆。同时,引导学生对于定义的形成过程进行别样的表述。如,从集合的角度考虑:到定点距离等于定长的点的集合叫作圆;也可以用轨迹来定义:平面上一动点以一定点为中心、一定长为距离运动一周的轨迹称为圆。这样,使圆的定义深入到学生心中。生活是认识概念、探究概念发生和发展的重要场所。利用生活中的实例,帮助学生建构数学概念,能够起到形象直观的作用,也让学生从情感上更加乐于探究,从而加深学生对概念的理解和掌握。
二、揭示本质,理解概念的内涵与外延。
数学概念教学的重点是,让学生把握概念的内涵与外延。只有这样,才能揭示概念的本质和关键,促使学生掌握概念。概念的内涵其实就是概念的“质”,也就是概念的根本,概念的外延是概念的“量”,也就是所有对象的和。明确了概念的内涵与外延,就等于把握住了概念的全部。内涵和外延是概念教学不可分割的两部分。只要揭示概念的内涵,就会涉及概念的外延。将两者相统一,才能使概念教学更加完美。例如,在讲“一次函数”时,学生对于函数是陌生的,而函数又是整个中学阶段的重要内容,函数思想贯穿于中学数学的始终。函数概念对于学生来说比较抽象,它是由学生已经熟悉的研究静止现象到研究运动变化现象的提升,实现了由常量到变量的转变,让学生的认知观念实现了质的飞跃。教师可以让学生明确两个变量一一对应的关系,也就是对于自变量(x)的每一个确定的值,y都有唯一确定值与其对应。在这里,学生就会从中找到关键词,即“每一个”、“唯一确定”,也就把握了函数的本质“对应”。在把握了内涵的`基础上,教师可以用解析式或图象的形式给出不同的函数,让学生了解概念的外延,从而使概念教学显得丰满和有条理。在概念教学中,抓住概念的本质是教学的关键。只有让学生把握概念的内涵与外延,才能使学生理解和掌握概念,从而提高学生的思维水平和数学素养。
三、实际应用,培养学生的应用意识。
实际应用是概念教学的根本目的。只有让学生感受到学习的价值和意义,才能激发学生的学习欲望,才能让学生乐于参与学习活动。在概念教学中培养学生的应用意识,其实就是要让学生有意识地用所学的概念解决生活中的问题。这样教学,既是对概念的巩固,也是培养学生的能力与素质的重要环节。实际应用,促进了课堂教学的情境设置,也使学生理解了数学概念。例如,在讲“锐角三角函数”时,对于三角函数的概念,教师可以用实际生活中的例子来引导学生探究,提高学生的应用意识和实践能力。如,测量旗杆的高度,学生除了想到用学过的三角形相似之外,还可以用刚学的锐角三角函数来解决。如仰角60°时,量得自己离旗杆底端12m,则可以得出旗杆大约高多少米?再次移动位置,量出与旗杆的距离和仰角的度数,用计算器计算后检查求得的结果是否相同,从而加深学生对正切概念的掌握。实际应用,使概念教学的实用性得到体现,学生在“学会”的基础上“会用”,激发了学生进一步学习的动力,使学生由“学会”到“会学”。总之,概念教学,不仅是为了让学生获得更多的知识与技能,更重要的是让学生积累经验和掌握方法。教师要让数学概念深入学生学习的全过程,使学生在自主学习与合作探究中深入地把握数学的本质。概念教学,既要突出量的积累,又要注重质的提升,在为学生创设丰富生活情境的前提下,让学生探究发现概念的本质,并将知识应用于生活中。
浅谈小学数学几何图形概念的教学策略论文篇十
杨胜。
毕业两年,每学期都带两个班的数学课,一直以来,我就觉得数学有几大难题,其中就有对于概念的教学,像老师所提到了现象,在教学时,学生对于概念好像识记了,掌握了,甚至会背了,可是到需要运用这些概念时,学生往往不知所措,完全不会运用。
而数学概念是数学思维的细胞,是形成数学知识体系的基本要素,是数学基础知识的核心,是孩子们学习数学的坚固基石。对于小学的孩子来说,正确地理解、掌握数学概念更是孩子学好数学的前提和保障,有利于学生在后来的学习中形成完整的、清晰的、系统的数学知识体系。
下面我就以我所了解的我们班的情况浅谈几点:
第一、存在问题。
1、学生方面:对于小学的孩子来说,其抽象思维能力较弱,对于数学语言的理解和表达有一定的难度,从而使学生出现死记硬背牢记了数学概念,确完全不知该如何应用。
2、教师方面:由于我刚刚毕业,本身对于小学数学概念就没有一个系统的、清晰的认识,只是跟着教材、教参走,结果在某些问题上自己也拿捏不准,自然会使得孩子们数学概念越来越不确定,越来越糊涂。
3、教学设备方面:由于学校处于偏远地区,教学资源特别薄弱,并缺少教学最需要的多媒体,也没有什么教具给我们老师提供,同时由于课堂教学在空间、时间上的限制,使得概念教学显得枯燥、乏味,教学也往往只浮于表面。
4、来自概念本身的:数学概念是客观现实中的数量关系和空间形式的本质属性在人脑中的反映,具有抽象概括性;数学概念又是以语言和符号为中介的,这和我们对生活的理解是不同的,造成了生活概念和数学概念的混淆。比如大部分孩子对于“角”就仅停留在角的顶点上,并需要依托具体的实物才能进行描述,而数学中的“角”则是“角是有公共端点的两条射线所组成的几何图形”,这对于孩子们来说是费劲的。
第二、解决方法。
怎样让这些枯燥、抽象的概念变得生动有趣,使课堂教学更有效,减轻孩子们的学习负担,让概念在孩子们心中得到完美内化呢?或许我们可以从以下几方面入手。
1、概念的引入讲述宜直观形象。
针对小学孩子的抽象思维能力较弱,对数学语言描述的概念理解较为困难,我们在教学中应该多用形象的描述,创设有趣的问题情境,打些合理的比方等,努力让孩子们理解所学概念,可以采用以下一些方式来进行教学。夸张的手势,丰富的肢体语言,理解运算所蕴含的意义,区分概念的差别。
2、概念的练习宜生动有趣。
小学孩子从心理状态上来说较难适应学校的教学生活,在学习中总是会感到疲劳乏味,碰到相对枯燥的概念教学时这种疲惫更是由内而外。德国教育家福禄培尔在其代表作《幼儿园》中认为,游戏活动是儿童活动的特点,游戏和语言是儿童生活的组成因素,通过各种游戏,组织各种有效的活动,儿童的内心活动和内心生活将会变为独立的、自主的外部自我表现,从而获得愉快、自由和满足。将游戏用于教学,将能使儿童由被动变为主动,积极地汲取知识。
游戏、活动是孩子们的最爱,让他们在游戏活动中获取知识,这样的知识必定是美好而快乐的。有了这样的感觉,孩子们学习数学的兴趣一定是浓厚的,我们再让数学的魅力适度展示,让他们感觉到学习数学不但是一件轻松、快乐的事更是一件有意义的事。我想他们继续进行探索、学习新知的动力就来自于此了。
四、概念的拓展宜实在有效。
美国实用主义哲学家、教育家杜威从他的“活动”理论出发,强调儿童“从做中学”“从经验中学”,让孩子们在主动作业中运用思想、产生问题、促进思维和取得经验。确实,在一些亲力亲为的数学小实验中,孩子们表现出了一种自然的主动的学习情绪。他们以充沛的精力在这些小实验、小研究中主动地讨论所发生的事,想出种种方案去解决问题,使智力获得了充分的应用和发展。在数学概念的教学中,设计一些孩子能力所能致的小研究活动,可以让孩子对这些抽象的数学概念得到进一步体验、内化,得到课堂教学所不能抵达的效果。
孩子对于较大的单位比如说“千米”“吨”等,由于其经验的限制往往没有什么概念。只是,教师这样说了,他也便这样记了,对他而言也仅仅只是一个简单的字符而已。仅仅通过课堂教学,那么“千米”在孩子们的印象中便是“1千米=1000米”是一个不能用手丈量的长度;“吨”在孩子们的印象中便是“1吨=1000千克”是一个拿不动的质量。至于“1千米”到底有多长,“1吨”到底有多重?孩子们心中并无底,才使得经常会出现:一幢居民楼高约20(千米);一节火车车厢载重量为60(千克)这样的笑话。如果我们能让孩子们来进行切身的体验再附以一些小实验,这些问题便能迎刃而解了。
概念是枯燥的、乏味的,但却是重要的。对于第一学段的孩子们我们不能假定他们都非常清楚学习数学概念的重要性,指望他们能投入足够的时间和精力去学习数学概念,也不能单纯地依赖教师或家长的“权威”去迫使孩子们这样做。那么就需要我们积极地引领他们,使之学得轻松,学得扎实,让他们体会到数学所散发出的无穷魅力,让概念深入心中,为数学学习服务。
我也只是一个刚刚踏上教师岗位的教师,对于班级管理存在的问题,对于教学当中存在的问题,太多太多了,希望各位老师能多多指教,在下一定虚心请教。
2014年10月14日。
浅谈小学数学几何图形概念的教学策略论文篇十一
数学概念是学生接触与学习每一个新知识点必先学习的东西,它对于学生的整个数学科目的学习来说是基石一般的存在,因此学生从小学数学概念起必须打好学习的基础,让学生在清晰的了解各种概念的基础上,帮助他们学习最基本的数学知识,只有这样才能让数学学习的路越走越平整、越走越宽敞。
1、从数学概念的涵义与构成方面来看。首先是涵义方面,从教学的角度来看,数学概念指的是在客观现实中数量关系与空间形式二者的本质属性在人们脑中所形成的反应,其表现为数学用语中的一些专用名词、符号或术语等,比方说是“周长”、“体积”。其次是概念的构成方面,一般来说数学概念是可以分成两个组成部分,一个是内涵,另一个是外延。概念的内涵其实指的就是这个概念所反映出来的所有对象的一个共同本质属性总和。比方说是三角形的概念,它的内涵所指的就是其本质属性中“三条线段”与“围成”的总和。而概念的外延指的就相对会比较广泛,它指的是此概念所囊括的一切对象总和。以四边形的概念为例,它就包括了正方形、长方形、梯形等所有很多对象。
2、小数学概念的特点。小学时期数学概念的特点其他可以从三个方面来进行简单的归纳:第一个就是其呈现形式上的特点。由于小学数学是一个引导学生入门的时期,因此它的概念在呈现方式上也会显得更为多样化,像是最初采用图画的方式,再到后来的描述方式,最后还有定义式等等。第二个特点就是直观性较强。一般来说数学概念最为突出的特点就是其抽象性与概括性,但我们在进行小学阶段数学教学时,就会发现小学数学概念通常都会定义得比较直观,比较形象具体,基本都是以小学生的接受能力与理解能力为起点来进行设计的。第三个特点是教学阶段性较强。小学时期的教学会受到很多客观原因的局限,从而导致教师在进行数学教学时,所讲解的数学知识也会存在极强的阶段性。比方说在低年级时,孩子们的理解能力与认识能力还尚未发展到一定的水平,因此对于很多抽象性的知识很难理解,因此教师在讲解时就只能通过分阶段逐步渗透的办法来解决问题。
开展概念教学可以从多种形式与内容入手,既要梳理各种概念之间的联系与区别,又要形成统一的系统概念体系,可以从以下几个方面进行:
1、采用不同呈现形式开展小学数学概念教学。概念教学的形式众多,可以从图画式教学入手,教师在采用这种方式进行教学时,一定要注意引导学生自主的去发掘图画中所蕴含的真正涵义,从而达到揭示概念本质的效果,从而让学生对概念有个更清晰的认识。以梯形概念教学为例,教师在开展教学工作时,应该要就所展示出来的图画适时的引导学生去探索并揭示出梯形的本质特征,并且最终实现将表象图画转换成抽象数学语言的目的。其次是描述式,其实采用这种呈现形式的概念一般都是“字”与“形”相结合的,比方说是小数的概念、直线的概念,在概念描述中直接就把其本身的图形或默示所标示出来了,教师在进行教学时只需要把“形”所表达的意思与孩子们传达清楚再结合“字”就能使他们快速掌握这个知识点。还有就是定义式,这种方法一般适于一些高年级的学生,相对而言它的概括性以及抽象性都会强很多,因此教师在教学时可以适时的采用一些直观的教学工具或举例讲解等办法,将抽象的知识转化成具体形象的事物,让学生们快速理解与掌握。
2、从概念间的区别与联系入手,让学生形成数学概念系统。首先是同一概念在教学时的联系与区别。因为小学数学在很多时候,虽然是同一个概念,但是在不同的时期所要求的教学程度是大不相同的,因此对于概念的讲解程度也会有所区别。以分数的教学为例,在三年级时我们的教学要求只是停留在让孩子们认识分数的程度,而在五年级时,我们就必须向他们解释分数的真实意义与性质。再比方说是方程这一概念,在刚开始学习的时候,我们只要求学生有一个基础的了解与渗透,而到高年级后就会要求他们对方程给与一个明确的定义。其次是不同概念之间也存在着联系。虽然有些概念它们是大不相同的,但是在某些程度上也是存在着一定的联系,因为数学的概念并不是孤立的,它们是相辅相成的。教师在进行日常教学时应该有意识的引导学生去探索与明确这些数学概念之间所存在的联系,为他们更好的构建概念系统打下结实的基础。
三、结束语。
总之,教师在开展小学数学概念教学时必须以学生实际情况为根据,采用最为合适的方法进行概念教学,因为只有从小打好基础,才能实现数学概念教学的目标。
参考文献。
[2]许中丽.提升小学数学概念教学有效性策略的研究综述[j].南昌教育学院学报.2015(03)。
浅谈小学数学几何图形概念的教学策略论文篇十二
(山东省滨州市滨城区滨北街道办事处中心小学)。
摘要:数学来源于生活,理应回归生活。在小学数学教学过程中,教师要引领学生发现生活中的数学,用学到的数学知识解决生活中的问题。数学教学应搭建理论与生活对话的平台,使学生真正学以致用。
您可能关注的文档
- 法制副校长工作制度(模板17篇)
- 路桥施工员工作总结(大全9篇)
- 2023年终端门店销售技巧的心得体会 终端销售经验(五篇)
- 最新路桥公司年终工作总结(模板13篇)
- 芜湖市消防安全重点单位公告查询 芜湖市消防专家库专家公示(5篇)
- 年度评选方案(优秀8篇)
- 2023年社区开展创业就业培训简报 社区就业创业政策宣传简报(3篇)
- 最新第一次考试不及格的我作文(实用10篇)
- 最新消防安全户籍化管理制度(优质14篇)
- 北师大版小学数学知识总结(优秀15篇)
- 探索平面设计师工作总结的重要性(汇总14篇)
- 平面设计师工作总结体会与收获大全(20篇)
- 平面设计师工作总结的实用指南(热门18篇)
- 免费个人简历电子版模板(优秀12篇)
- 个人简历电子版免费模板推荐(通用20篇)
- 免费个人简历电子版制作教程(模板17篇)
- 学校贫困补助申请书(通用23篇)
- 学校贫困补助申请书的重要性范文(19篇)
- 学校贫困补助申请书的核心要点(专业16篇)
- 学校贫困补助申请书的申请流程(热门18篇)
- 法制教育讲座心得体会大全(17篇)
- 教育工作者的超市工作总结与计划(模板18篇)
- 教学秘书的工作总结案例(专业13篇)
- 教师的超市工作总结与计划(精选18篇)
- 单位趣味运动会总结(模板21篇)
- 礼品店创业计划书的重要性(实用16篇)
- 消防队月度工作总结报告(热门18篇)
- 工艺技术员工作总结(专业18篇)
- 大学学生会秘书处工作总结(模板22篇)
- 医院科秘书工作总结(专业14篇)