手机阅读

最新小学数学鸡兔同笼教案(汇总9篇)

格式:DOC 上传日期:2023-11-10 22:31:40 页码:10
最新小学数学鸡兔同笼教案(汇总9篇)
2023-11-10 22:31:40    小编:ZTFB

教案是教师为指导教学活动制定的一种实施计划,它包含教学目标、教学内容、教学步骤、教学方法和评价等内容,有助于保证教学过程的有序进行,提高教学效果。教案的编写需要注重合理安排教学内容和步骤,确保教学环节的连贯性和有效性,教师可以根据教学对象的特点以及自身的教学经验进行灵活调整和创新。编写教案时,首先需要明确教学目标和教学重点。下面是一份优秀的教案范文,供大家参考和借鉴。

小学数学鸡兔同笼教案篇一

1、知识与技能:学会使用列表方法解决鸡兔同笼问题,了解使用假设解决鸡兔同笼问题的方法。

2、过程与方法:在尝试和列表中经历探究与解决问题的过程,掌握分析解决问题的方法。

3、情感态度与价值观:了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的兴趣。

小学数学鸡兔同笼教案篇二

尊敬的各位评委,各位老师:

大家好!

我所说课的内容是北师大版五年级上“尝试与猜测”的第一课时《鸡兔同笼》,教材安排了此类应用题,且把它归类于尝试与猜测这个大课题之下,其用意就是要学生通过对日常生活中的现象进行观察与思考,并从中发现一些特殊的规律。教材借助于“鸡兔同笼”这个载体,让学生经历列表,尝试和不断调整数据的过程。从中体会解决问题的一般策略——列表。

围绕“鸡兔同笼”使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一尝试法,跳跃尝试法,取中尝试法等来解决问题。

学生在三年级时学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一尝试法列表解决问题。本班的学生思维活跃,敢想敢说,有一定的小组合作经验。

基于以上认识,我确立了本节课的教学目标:

知识目标:在解决“鸡兔同笼”的活动中,通过列表举例,尝试计算等方法解决鸡兔的数量问题。

能力目标:培养学生的合作意识,在现实情境中,使学生感受到数学思想的运用和解决问题的关系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

情感目标:了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的自信心。

教学重点:探索列表枚举的不同的方法,找到解决问题的策略。

教学难点:在自主探索过程中,掌握利用数据比较、判断、调整的方法。

突破点:发现规律,确定猜测范围。

教学过程中我将游戏导入立足于学生的生活经验和知识背景,新授部分围绕着“自主参与---合作学习----深刻体会”让学生开展学习活动。我将教学过程分为以下四个部分:

一游戏导入,在学生的头脑中有个初步的鸡兔腿数的计算意识。

二新授部分,通过观察主题图,确定数学信息,根据要求填写表格。汇报三张表格的填写过程,以及所运用的尝试方法的各自优势所在。

三迁移练习,综合应用。

四课堂总结及情感目标延伸。

课堂教学实施过程:

一游戏导入。

初步计算鸡兔的总腿数。“今天我们来玩个接数游戏,请你仔细听,然后大家一起接数。一只小鸡一只兔,两个头六条腿。两只小鸡两只兔,四个头十二条腿。。。。。。”目的是在学生头脑中对鸡兔的头,腿的总数有个初步映像。在这里利用了生活资源调动学生的已有的知识背景来参加这个活动,使其产生了浓厚的兴趣。同时游戏导入也起到了引题的作用。此时介绍我国古代数学名著《孙子算经》,让学生了解我国古代数学的光辉成就,渗透德育教育。

二新授部分。

1(课件)出示主题图。让学生根据数学信息,结合刚才的游戏去猜鸡兔各有多少只?学生猜测的数据都能符合鸡兔有20个头这个条件。要想验证数据是否正确,就是要看腿的总数是否符合题上的条件54条。

2于是,安排了学生自己列表填数来解决问题。在这个过程中,如何凭自己的猜测来调整数据就显得尤为重要。猜测是要学生根据自己的知识背景和生活经验。让学生分组合作讨论。因为已经有了导入的铺垫所以在这个环节我没有给与更多的提示。

3展示学生的表格与书本相似的。我先把问题抛给学生:现在老师给大家一点时间,请你仔细看看这三张表格是怎样填数的。小组再一次合作交流。

第二张表格是学生自己汇报完成。强调跳跃尝试法的制表过程。它有很多种呈现方式。可以从2只鸡,18只兔开始。每次增加2只鸡。或者是每次增加不同数量的鸡的只数。

第三张表格,老师和学生共同完成。这种方法对于一些思维活跃的学生是一次提升的过程。总结制表方法:取中尝试法。

三迁移练习,综合应用。

我把教材的练习题部分改动。因为本课主要不是为了解决“鸡兔同笼”问题本身,而是借助这个载体解决与之类似的问题。

第一题是为了巩固本课的新知。

第二题的答案有两个,在学生找到第一个答案的时候。引导学生继续举例。这说明了数学答案的不唯一性,要求学生有严谨的学习态度。

四课堂总结及情感目标延伸。

1总结列表是解决一般问题的策略,以及列表的三种方法。

2根据时间灵活安排《孙子算经》中是如何解答“鸡兔同笼”问题的呢?(课件)。

五反思教学效果。

深入浅出的教学过程让学生体会到了列表不仅可以解决鸡兔同笼的问题,还可以解决生活中的问题。新课标指出数学来源于生活更要应用于生活。

本节课能够顺利完成,那是因为学生的合作交流得到了充分的发挥。让学生学会讨论,合作交流。讨论会使学生成为知识的共同创造者!

以上就是我的反思性说课。这是我第一次参加这种形式的比赛。感谢一直帮助我的网友,老师。我的课不一定成功,但这次非比寻常的经历却让我成功的学到了很多知识。

尝试与猜测(鸡兔同笼)教学设计第二稿。

哈市松北区万宝中心校车成超。

教材分析。

本课时向学生提供了现实、有趣、富有挑战的学习素材,借助我国古代趣题“鸡兔同笼”问题,使学生展开讨论,应用假设的数学思想,从多角度思考,运用多种方法解题,学生可以应用逐一尝试法,跳跃尝试法,取中尝试法等来解决问题。学生在具体的解决问题过程中,他们可以根据自己的经验,逐步探索不同的方法,找到解决问题的策略,在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

学情分析。

在此之前,学生已经在三年级时学习了简单的“鸡兔同笼”问题,他们已经初步尝试了应用逐一尝试列表解决问题。本班的学生思维活跃,敢想敢说,有一定的小组合作经验。

教学目标。

知识目标:在解决“鸡兔同笼”的活动中,通过列表举例,尝试计算等方法解决鸡兔的数量问题。

能力目标:培养学生的合作意识,在现实情境中,使学生感受到数学思想的运用和解决问题的关系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。

情感目标:了解我国古代数学的光辉成就,增强民族自豪感;提高学生对数学的好奇心和求知欲;增强学数学的自信心。

教学重点:探索列表枚举的不同的方法,找到解决问题的策略。

教学难点:在自主探索过程中,掌握利用数据比较、判断、调整的方法。

突破点:发现规律,确定猜测范围。

针对本节课的教学目标及重、难点,根据五年级学生的认知水平,本节课的教学思路是。

一游戏导入,在学生的头脑中有个初步的鸡兔腿数的计算意识。

二通过观察主题图,确定数学息,根据要求填写表格。

三汇报三张表格的填写过程,以及所运用的尝试方法的各自优势所在。

(一)游戏导入,初步计算鸡兔腿数。

师:同学们,我们来玩一个接数游戏好吗?要求事请你仔细听,咱们大家一起数下去。

一只小鸡,一只兔,两个头,六条腿。

两只小鸡,两只兔,四个头,十二条腿。

三只小鸡,三只兔,六个头,十八条腿。

四只小鸡,四只兔,八个头,二十四条腿。

五只小鸡,五只兔,十个头,三十条腿。

师:同学们数得很准确。原来在动物身上有许多数学信息是值得研究的数学问题。如在我国古代数学名著《孙子算经》中有这样一个题目:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?就是研究鸡兔同笼的问题。今天我们就来学习有关鸡兔同笼问题的应用题。(板题)。

二自主探索,发现新知。

1(课件)。

师:从图中你能知道哪些数学信息?(有鸡、兔,20个头,54条腿)。

现在同学们就来猜一猜鸡兔各有多少只?(可以根据我们刚才玩的游戏)。

师:把你猜想的结果跟你的同桌交流交流。

生1:鸡7只,兔13只。

师:他的答案是否正确呢?我们就来验证一下。

腿:14+52=66条。

生2:猜测鸡是15只,兔是5只,腿50条。

师:总腿数少了4条,怎么办?请同学们用老师发的这张表格完成你的猜想。

(展示学生的表格与书本相似的)。

现在老师给大家一点时间,看看这三张表格是怎样解决这个问题的?5分钟。

师:现在我们就来具体看看这三张表格。

1课件出示:第一张表格。

师:谁来解释一下第一栏的过个数字各代表什么意思?

谁来说说第二栏的各数的意思?

师:你们认为第一张表是按照什么样的顺序来找到正确答案的?

(第一张表,它是先假设鸡有一只,则兔子有19只,看腿的总数是不是54条,腿多了,说明兔子多了,然后依次增加一只鸡,减少一只兔,就这样依次的用一只鸡换一只兔,再算腿的总数符不符合条件,直到找到正确答案为止。最后经过了13次计算,终于找到了答案。)。

师:我们给这种列表方法取个名字叫“逐一尝试法”

小结:从表中我们可以看出每减少一只兔增加一只鸡,腿的总数都减少2只。

下面我们来看第二张表。

2、课件出示第二张表:

师:谁愿意说说第二张表格的列表过程?

第一次换了4只鸡,总腿数减少8条。第二次又换了5只鸡,总腿数减少10条。于是又换了5只鸡,总腿数是50条。由此可以判断兔的只数应该在5和10之间。接下来又增加1只兔,2只兔,得到正确答案13只鸡,7只兔。

师:我们给这种列表方法也取个名字叫“跳跃尝试法”。

3、课件出示第三张表。

师:谁来解释一下第三张表是如何来解决这个问题的?

生:先是假设兔子数和鸡的只数各一半,发现总腿数偏多,于是肯定兔的只数多了,应该减少兔子的只数来增加鸡的只数。

师:我们给这种列表方法取个名字叫“取中尝试法”

师:看完了这三张表,你能不能说说这三“逐一尝试法,跳跃尝试法和取中尝试法”在列表解决这个问题时有什么不一样的地方?)。

师小结:逐一尝试法:优点是能够引导大家发现规律,而且答案不会遗漏。

跳跃尝试法:优点是尝试的范围缩小了一半。

取中尝试法:需要不断调整,思维价值大。

三作业布置,巩固提高。

1、停车场里有三轮车和自行车共22辆,有59个轮子,自行车、三轮车各几辆?

四全课总结。

在这节有趣的数学课上,你学到了什么知识?

(灵活安排)介绍《孙子算经》:《孙子算经》中是如何解答“鸡兔同笼”问题的呢?(课件)。

小学数学鸡兔同笼教案篇三

(二)探索新知。

先从简单问题出发,呈现例1:8个头,26只脚,鸡和兔子各几只?猜测一下。

追问:按顺序列表填写一下,应该是各有几只?

得出结论有3只鸡,5只兔子。

进一步追问:还有没有其他方法?

学生活动:前后四人一小组讨论。

教师总结:假设笼子里都是鸡,那么多出来的脚的个数除以2便是兔子的只数,用头数减去便得到鸡的只数。如果假设所有的动物都是鸡,那么就有8×2=16只脚,这样就多出26-16=10只脚。多出的10只脚均为兔子的,一只兔子比一只鸡多2只脚,所以算得有10÷2=5只兔,3只鸡。

(三)课堂练习。

ppt再次出示导入中的问题“上有三十五头,下有九十四足,问雉兔各几何”

(四)小结作业。

提问:今天有什么收获?

教师引导学生回顾解决鸡兔同笼问题的方法。

课后作业:思考还有没有其他方式能够解决鸡兔同笼问题?自己设计鸡兔同笼的问题去考考小伙伴或家人。

小学数学鸡兔同笼教案篇四

1(课件示:书中112页情境图)。

师:同学们看这就是《孙子算经》中的鸡兔同笼问题。

这里的“雉”指的是什么,你们知道吗?这道题是什么意思呢?谁能试着说一说?

生:试述题意。(笼子里有鸡和兔,从上面数有35个头,从下面数有94只脚。问鸡兔各几只?)。

师:从题中你发现了那些数学信息?

生:笼子里有鸡和兔共35只,脚一共有94只。

生:这题中还隐含着鸡有2只脚,兔有4只脚这两个信息。

师:根据这些数学信息你们能解决这个问题吗?这道题的数据是不是太大了?咱们把它换成数据小一点的相信同学们就能解决了。

2.出示例一(课件示例一)。

师:谁来读读这个问题。

谁能流利的读一遍?

请同学们轻声读题,看看题里告诉我们什么信息,要解决什么问题?

生:读题。

师:现在就请你来解决这个问题,你想怎样解决?把你的想法和小组内的同学说一说。

生:我想我能猜出来。一次猜不对,多猜几次就能猜对。

师:按你的意思就是随意的猜,为了不重复,不遗漏,我们可以列表按顺序推算。(板书:列表法)。

师:还有其他方法吗?

生:我想用方程法也能解决。(板书:方程法)。

生:要是笼子里光有鸡或光有兔就好算了,可这笼子里却有两种动物,我还没想好怎么算。

师:那我们就不妨按笼子里只有鸡或只有兔来思考,假设笼子里全是鸡或全是兔,看脚数会有什么变化,说不定从中你们就能找到解题的思路呢。(板书:假设法)。

师:还有别的方法吗?那这些方法行不行呢?下面就请同学们以小组为单位,对你们感兴趣的方法进行尝试验证一下吧。

生:在小组内尝试各种方法。

师:经过上面的研究学习,你们都尝试运用了哪种方法呢?下面以小组为单位进行汇报。

生1:我们小组用列表法找到了答案,有3只鸡,5只兔。

生:很麻烦。

师:是啊,那要花费很长时间。哪个小组还想汇报?

生:我们小组用方程法计算的。(生说计算过程,师板书过程。)。

生:说数量关系。(鸡脚数+兔脚数=26只脚)。

师:根据这个数量关系你能想到另两个数量关系吗?

生:汇报师板书两方程。

师:除了可以设兔有x只,还可以怎样设?

生:还可以设鸡有x只。那兔就有(8-x)只。

师:对,那根据什么数量关系你又能列出怎样的方程呢?

生:汇报,根据鸡脚数+兔脚数=26只能列出方程2x+4(8-x)=26根据26只脚-鸡脚数=兔脚数能列出26-2x=4(8-x)根据26只脚-兔脚数=鸡脚数能列出26-4(8-x)=2x。

师:同学们看根据不同的数量关系我们能列出这么多的方程,但是同学们要注意用方程法解决问题时必须要找准数量关系。

师:除了这两种方法,假设法有运用的吗?

生:汇报。我们小组是把笼子里的动物都看做鸡。(板书:全看作鸡)。

生:我们是这样想的。假设笼子里都是鸡,应有脚8×2=16只,比实际少了26-16=10只,一只兔少算2只脚,列式为:4-2=2只,所以能算出共有兔10÷2=5只鸡就有8-5=3只。(生说师板书计算过程)。

师:这位同学说的你们听明白了吗?结合算式进行明理。明确每一步算式各表示什么意义。

师:这种方法都明白了吗?结合课件图画进行解释质疑。

生:16只。

师:实际上笼子里有26只脚,怎么会少了10只脚呢?(课件显示)。

生:每只兔子少算2只脚。

师:一共少算10只脚,每只兔子少算2只脚,所以有5只兔子,3只鸡了。

生:试做。

师:刚才已经假设都是兔的同学,再按假设全是鸡的情形算一算。

生:练做。

师:谁来说说假设全是兔该怎么算?

生:假设笼子里都是兔,就应有脚8×4=32只,比实际多了32-26=6只。一只鸡多算2只脚,4-2=2只。就能算出共有鸡6÷2=3只。兔就有8-3=5只。(生说师板书计算过程。)。

师:你们也都算上了吗?师解释:要是都是兔的话,就有32只脚,而实际有26只脚,为什么会多出6只脚呢?(课件示)。

生:每只鸡多算2只脚。

师:一共多算6只脚,每只鸡算2只,所以有3只鸡,5只兔。

师:还有运用其他方法的吗?

生汇报:列表法适合于数据小的问题,数据大了就不适用了。

方程法思路很简捷,但解方程比较麻烦。假设法,写起来简便,但思路很繁琐。

师:那以后我们再解决鸡兔同笼问题时就要根据具体情况灵活选择计算方法。

小学数学鸡兔同笼教案篇五

在我校本学期组织的公开课教学中,我讲的是人教版的数学《鸡兔同笼》这课。由于我所教的班级学生整体基础较差,课前我对我班的学生进行了估计。一小部分学生接触过鸡兔同笼问题,但对于多数的学生来说,学习《鸡兔同笼》可能会有一定的难度。所以在这节课当中,我决定主要借助教师引导探究这个手段,让学生在尝试,探索,合作中弄懂鸡兔同笼问题的基本解题思路。

师生共同经历了三种不同的方法,列表法,假设法和代数法。让学生认识、理解、运用假设法是本节课的教学重点,也是教学难点。为此,以表格中数据变化规律为探究基础,以小组合作、师生互动为探究方式,以课件动态演示为探究辅助手段,巧妙地将认知经验和思维过程转化成了数学语言,即数学算式,从而形成了解决问题的全新的一般策略,发展了学生的思维水平和推理能力。从学生的学习效果来看,在本节的教学中,学生不容易理解或者说容易出错的就是第三步,实际上也就是对“差”的分析,因此,我和课件结合起来,让学生理解:假设全是鸡,就多出了10只脚,而每增加一只兔子,减少1只鸡,多出的只数就会减少2,10里面有5个2,所以应该有5只兔子,这里一定注意要和学生讲清楚2是什么,要学生不仅仅是看算式,更要看算式前面的文字。结合前面的文字来帮助学生理解算式中的10是什么,2是怎么来的,表示什么意思,这样学生才会对假设法有一个准确的认识。

反思整节课,我感觉基本实现了我预定的教学目标。但是还是存在着很多的不足,例如:

首先,我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型,大多数同学还是比较喜欢用代数法来解决。

然后,就是在时间的安排上不够合理,导致本节课我并没有完成我预设的内容。在进行教学设计时,我也感觉到本节课的内容着实又点多,虽然问题没几个,但本节课重在方法的渗透,学生必须经历多种方法解决该类问题的一个过程,而这个过程是绝对不能走过场的,必须实实在在的开展探讨活动,这样学生必须有足够的时间,不断调整解题策略,逐步探讨出不同的方法,找到合理解决问题的策略;这样一节课的时间就显得不够用了,导致最后没有时间来了解日本的龟鹤问题和解决生活中的实际问题。

对于这个问题我也认真的思考了一下解决的办法,因为这是一节公开课,所以要给所有听课教师呈现一节完整的课,那么就要有联系生活实际的练习或者说必须做几道练习题,那么在前面为了节省时间就可以说说解题的思路或者让学生说说列式就可以了,这样就可以解决龟鹤问题,也可以出示生活中的问题让学生用本节课学习的方法解决,这也就体现了数学和生活实际联系很大,让学生觉得学好数学有很大的用处。

将本文的word文档下载到电脑,方便收藏和打印。

小学数学鸡兔同笼教案篇六

师:咱班同学家里有养鸡的吗?有养兔的吗?既养鸡又养兔的有吗?把鸡和兔放在同一个笼子里养的有吗?在我国古代就有人把鸡和兔放在同一个笼子里养,正因为这样,在我国历才出现了一道非常有名的数学问题,是什么问题呢?你们想知道吗?这节课我们就共同来研究大约产生于一千五百年前,一直流传至今的“鸡兔同笼”问题。

小学数学鸡兔同笼教案篇七

“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。

“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。

1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。

会用画图法、列表法和假设法解答“鸡兔同笼”问题。

用合理的方法解答生活中的“鸡兔同笼”问题。

多媒体课件、表格等。

一、创设情境、揭示课题。

1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?

2.播放视频,介绍:2015年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。

这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著,今天,我们就来研究中国历史上著名的数学趣题“鸡兔同笼问题”。(板书课题)。

2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。

出示题目:鸡兔同笼一共有8个头,一共有26条腿。鸡和兔各有几只?

二、合作探究、学习新知:

活动一:探究用猜测列表法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流。

1.师:请大家自由读题,你们都知道了什么信息?

生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?

师:还有补充吗?有两个隐藏条件看谁细心发现了?。

生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。

2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?

学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。

(1)师:我们采用列表法得出的答案,好吗?翻开书104页,按照顺序列表试一试。

(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。

(汇报交流)。

小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。

活动二:探究用假设法解决“鸡兔同笼”问题。

学习方式:自学教材,小组合作交流。

小组1:假设全都是鸡:2×8=16(条)26-16=10(条)10÷2=5(只)??兔子8-5=3(只)??鸡谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”

师:除了可以假设都是鸡,还可以怎样假设呢?

小组2:引导学生说出都是兔,并演示。

师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?

师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。

小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)。

3、发散思考、加深理解。

下面我们来帮陈赫找到他房间的密码,解放他吧!

出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?

生:是什么样的假设法,让我们先睹为快!

师:还有别的做法吗?怎样解答?

小学数学鸡兔同笼教案篇八

生:我学会用……方法解决“鸡兔同笼”问题。

师:今天通过大家的自主探索,找到了多种解决“鸡兔同笼”问题的方法。方程法和假设法应用得都比较广泛。生活中我们还会遇到类似“鸡兔同笼”的问题,比如有些租船问题,钱币问题等。下节课我们就应用这些方法去解决那些实际问题。

板书设计:

列表法。

方程法假设法。

解:设有兔x只,鸡就有2(8-x)只。全看作鸡。

4x+2(8-x)=268×2=16(只)。

x=54-2=2(只)。

8-5=3(只)10÷2=5(只)。

答:有5只兔,3只鸡。8-5=3(只)。

26-4x=2(8-x)全看作兔。

26-2(8-x)=4x8×4=32(只)。

26-2x=4(8-x)4-2=2(只)。

26-4(8-x)=2x6÷2=3(只)。

8-3=5(只)。

小学数学鸡兔同笼教案篇九

1,、工人叔叔要在路的一边安装路灯,一共安装了6座。从第一座到最后一座一共有个间隔。

2、一排同学之间有7个间隔,这一排有()个同学。

10、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?

11、林老师家里时钟5点敲响5下,每下相隔2秒,敲完5下需要()秒。

12、酒店里的大钟4时敲4下,6秒敲完,10时敲响10下,需要多长时间?

13、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?

14、小红住的楼房每上一层要走20个台阶,从二楼到四楼要走()个台阶。

您可能关注的文档