作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。既然教案这么重要,那到底该怎么写一篇优质的教案呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。
初二数学因式分解教案设计篇一
1、知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2、过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3、情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)
教学方法:活动探究法
教学过程:
引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。什么叫因式分解?
知识详解
知识点1 因式分解的定义
把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
【说明】 (1)因式分解与整式乘法是相反方向的变形。
例如:
(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?
知识点2 提公因式法
多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流
下列变形是否是因式分解?为什么?
(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;
(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.
典例剖析 师生互动
例1 用提公因式法将下列各式因式分解。
(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);
分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形, 再把b-a化成-(a-b),然后再提取公因式。
小结 运用提公因式法分解因式时,要注意下列问题:
(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解。
(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a-b)n=(b-a)n(n为偶数)。
(3)因式分解最后如果有同底数幂,要写成幂的形式。
学生做一做 把下列各式分解因式。
(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2
知识点3 公式法
(1)平方差公式:a2-b2=(a+b)(a-b)。即两个数的平方差,等于这两个数的和与这个数的差的积。例如:4x2-9=(2x)2-32=(2x+3)(2x-3)。
(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式。即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.
探究交流
下列变形是否正确?为什么?
(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.
例2 把下列各式分解因式。
(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.
分析:本题旨在考查用完全平方公式分解因式。
学生做一做 把下列各式分解因式。
(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1)。
综合运用
例3 分解因式。
(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);
分析:本题旨在考查综合运用提公因式法和公式法分解因式。
小结 解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式。 是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止。
探索与创新题
例4 若9x2+kxy+36y2是完全平方式,则k= 。
分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差)。
学生做一做 若x2+(k+3)x+9是完全平方式,则k=。
课堂小结
用提公因式法和公式法分解因式,会运用因式分解解决计算问题。
各项有"公"先提"公",首项有负常提负,某项提出莫漏"1",括号里面分到"底"。
自我评价 知识巩固
1、若x2+2(m-3)x+16是完全平方式,则m的值等于( )
a.3 b.-5 c.7. d.7或-1
2、若(2x)n-81=(4x2+9)(2x+3)(2x-3),则n的值是( )
a.2 b.4 c.6 d.8
3、分解因式:4x2-9y2=。
4、已知x-y=1,xy=2,求x3y-2x2y2+xy3的值。
5、把多项式1-x2+2xy-y2分解因式
思考题 分解因式(x4+x2-4)(x4+x2+3)+10.
初二数学因式分解教案设计篇二
1、了解因式分解的概念和意义;
2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
㈠、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
㈡、探究新知
1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)
3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)
板书课题:§6.1 因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步
1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2 (a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系——相反变形。
㈣、巩固新知
1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。
㈤、应用解释
例 检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2)。
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习 计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
㈥、思维拓展
1、若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=
2.机动题:(填空)x2-8x+m=(x-4)( ),且m=
㈦、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
㈧、布置作业
作业本(1) ,一课一练
(九)教学反思:
初二数学因式分解教案设计篇三
1、 should
should是情态动词,意为“应当,应该”。表示义务、责任,可用于各种人称,无人称和数的变化,也不能单独作谓语,只能和主要动词一起构成谓语,表示说话人的语气和情态;否定形式为should not,缩写为shouldn’t。其主要用法有:
(1)表示责任和义务,意为“应该”。
you should take your teacher’s advice.你应该听从你老师的建议。
you shouldn’t be late for class.你不应该上课迟到。
(2)表示推断,意为“可能,该”。
the train should have already left.火车可能已经离开了。
(3)当劝某人做或不做某事时,常用should do sth.或shouldn’t do sth.,比must和ought to更加委婉。
you should brush your teeth vefore you go to bed.你在睡觉前应该刷牙。
2、 need
(1)need作实义动词,意为“需要,必然”,有人称、时态及数的变化。
sb./sth.需要某人/某物
need+ to do sth.需要做某事
doing需要(被)做
he needs some help.他需要些帮助。
you didn’t need to come so early.你不必来这么早。
the flowers need watering.花需要浇水。
(2)need也可作情态动词,意为“需要,必须”,没有人称、数和时态的变化,后接动词原形,多用于否定句和疑问句中。
he need not go at once.他不必立刻走。
need he go at once?他必须立刻走吗?
用must提问的句子,其否定回答常用needn’t。
— must he hand in his homework this morning?
他必须今天上午交作业吗?
— no, he needn’t.不,不必了。
【拓展】
need to do和need doing的辨析:
need to do sth.意为“需要干某事”,是自己主动去干某事;need doing其主语是物,含有被动的意义,相当于need to be done。
the student needs to do his homework as soon as he gets home.
那个学生需要一回家就做家庭作业。
my computer needs repairing.我的电脑需要修理。
3、 until
until意为“直到…”,有下列用法:
(1)作介词,后接时间名词,在句中作时间状语。
(2)作连词,后接从句,引导时间状语从句。
we waited until the rain stopped.我们等到雨停了。
she stayed there until 9 o’clock.她一直等到9点钟。
【拓展】
(1)until用在肯定句中,多与持续性的动词连用表示某动作持续到某时,until相当于till。如stand、wait、stay等,表示主句动作的终止时间。
(2)until可用于否定句中,即not…until…意为“直到…才”,常与非延续性动词连用。如open、start、leave、arrive等,强调主句动作开始时间。
the child didn’t go to bed until his father came back.
直到父亲回来,那个孩子才睡觉。
you’d better wait until the rain stops.你等到雨停。
初二数学因式分解教案设计篇四
句型结构基本概念
句型结构基本概念:与汉语相似,英语句子是由主语(subject),谓语动词(verb),宾语(object),表语(predicative),状语(adverbial),宾语补足语(objectcomplement)等成分组成,按照这些成分的组合方式英语句子可分为五种基本句型。
复合句
复合句(complex sentence)由一个主句(principal clause)和一个或一个以上的从句(subordinate clause)构成。
主句是全句的主体,通常可以独立存在;从句则是一个句子成分,不能独立存在。
从句不能单独成句,但它也有主语部分和谓语部分,就像一个句子一样。所不同在于,从句须由一个关联词(connective)引导。
初二数学因式分解教案设计篇五
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
应用平方差公式分解因式.
灵活应用公式和提公因式法分解因式,并理解因式分解的要求.
一、复习准备 导入新课
1、什么是因式分解?判断下列变形过程,哪个是因式分解?
①(x+2)(x-2)= ②
③
2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
x2+2x
a2b-ab
3、根据乘法公式进行计算:
(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=
二、合作探究 学习新知
(一) 猜一猜:你能将下面的多项式分解因式吗?
(1)= (2)= (3)=
(二)想一想,议一议: 观察下面的公式:
=(a+b)(a—b)(
这个公式左边的多项式有什么特征:_____________________________________
公式右边是__________________________________________________________
这个公式你能用语言来描述吗? _______________________________________
(三)练一练:
1、下列多项式能否用平方差公式来分解因式?为什么?
① ② ③ ④
2、你能把下列的数或式写成幂的形式吗?
(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2
(四)做一做:
例3 分解因式:
(1) 4x2- 9 (2) (x+p)2- (x+q)2
(五)试一试:
例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
(1) x4- y4 (2) a3b- ab
(六)想一想:
某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?
初二数学因式分解教案设计篇六
1、进一步巩固因式分解的概念;
2、巩固因式分解常用的三种方法
3、选择恰当的方法进行因式分解
4、应用因式分解来解决一些实际问题
5、体验应用知识解决问题的乐趣
灵活运用因式分解解决问题
灵活运用恰当的因式分解的方法,拓展练习2、3
一、创设情景:若a=101,b=99,求a2-b2的值
利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾
1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式。
判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)
(1)。x2-4y2=(x+2y)(x-2y) 因式分解 (2)。2x(x-3y)=2x2-6xy 整式乘法
(3)。(5a-1)2=25a2-10a+1 整式乘法 (4)。x2+4x+4=(x+2)2 因式分解
(5)。(a-3)(a+3)=a2-9 整式乘法 (6)。m2-4=(m+4)(m-4) 因式分解
(7)。2πr+2πr=2π(r+r) 因式分解
2、。规律总结(教师讲解): 分解因式与整式乘法是互逆过程。
分解因式要注意以下几点: (1)。分解的对象必须是多项式。
(2)。分解的结果一定是几个整式的乘积的形式。 (3)。要分解到不能分解为止。
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法
公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2
4、强化训练
试一试把下列各式因式分解:
(1)。1-x2=(1+x)(1-x) (2)。4a2+4a+1=(2a+1)2
(3)。4x2-8x=4x(x-2) (4)。2x2y-6xy2 =2xy(x-3y)
三、例题讲解
例1、分解因式
(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)
(3) (4)y2+y+例2、分解因式
1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=
4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3
三、知识应用
1、(4x2-9y2)÷(2x+3y) 2、(a2b-ab2)÷(b-a)
3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2
4、。若x=-3,求20x2-60x的值。 5、1993-199能被200整除吗?还能被哪些整数整除?
四、拓展应用
1、计算:7652×17-2352×17 解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)
2、20042+2004被2005整除吗?
3、若n是整数,证明(2n+1)2-(2n-1)2是8的倍数。
五、课堂小结:今天你对因式分解又有哪些新的认识?
初二数学因式分解教案设计篇七
重点语法:if 引导的条件状语从句
结构:主句 + if + 条件状语从句
if + 条件状语从句 + [(comma)] + 主句
注意:在 if 引导的条件状语从句中,主句应用将来时态,状语从句用一般现在时态。
例句:youll have a great time if you go to the party.
if you go to the party, youll have a great time.
重点短语:take away 拿走
around the world = all over the world 在世界各地
make a living 谋生
all the time = always 一直
whats the problem? = whats the matter? = whats wrong? 怎么了?
in order to do sth. 为了做某事
make sb. do sth. 使得某人做某事(to 省略,该结构是一个不带 to的不定式。)
make sb. adj. 使得某人(加形容词)
make sb. done 使得某人被做
be famous for 为而出名
be famous as 作为而出名
in class 在课堂上
spend (time/money) on sth. = spend (time/money) in doing sth. 花(时间/钱)用于做某事
see sb. do sth. 看见某人做某事(强调整个过程)
see sb. doing sth. 看见某人做某事(强调偶然性)
say said said 动词 say 的原形、过去式和过去分词
tell told told 动词 tell 的原形、过去式和过去分词
eat ate eaten 动词 eat 的原形、过去式和过去分词
speak spoke spoken 动词 speak 的原形、过去式和过去分词
初二数学因式分解教案设计篇八
1.单项式、单项式的定义.
2.多项式、多项式的次数.
3、理解整式概念.
单项式及多项式的有关概念.
单项式及多项式的有关概念.
ⅰ.提出问题,创设情境
在七年级,我们已经学习了用字母可以表示数,思考下列问题
1.要表示△abc的周长需要什么条件?要表示它的面积呢?
2.小王用七小时行驶了skm的路程,请问他的平均速度是多少?
结论:
1、要表示△abc的周长,需要知道它的各边边长.要表示△abc的面积需要知道一条边长和这条边上的高.如果设bc=a,ac=b,ab=c.ab边上的高为h,那么△abc的周长可以表示为a+b+c;△abc的面积可以表示为 ?c?h.
2.小王的平均速度是 .
问题:这些式子有什么特征呢?
(1)有数字、有表示数字的字母.
(2)数字与字母、字母与字母之间还有运算符号连接.
归纳:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做代数式.
判断上面得到的三个式子:a+b+c、 ch、 是不是代数式?(是)
代数式可以简明地表示数量和数量的关系.今天我们就来学习和代数式有关的整式.
ⅱ.明确和巩固整式有关概念
(出示投影)
结论:(1)正方形的周长:4x.
(2)汽车走过的路程:vt.
(3)正方体有六个面,每个面都是正方形,这六个正方形全等,所以它的表面积为6a2;正方体的体积为长×宽×高,即a3.
(4)n的相反数是-n.
分析这四个数的特征.
它们符合代数式的定义.这五个式子都是数与字母或字母与字母的积,而a+b+c、 ch、 中还有和与商的运算符号.还可以发现这五个代数式中字母指数各不相同,字母的个数也不尽相同.
请同学们阅读课本p160~p161单项式有关概念.
根据这些定义判断4x、vt、6a2、a3、-n、a+b+c、 ch、 这些代数式中,哪些是单项式?是单项式的,写出它的系数和次数.
结论:4x、vt、6a2、a3、-n、 ch是单项式.它们的系数分别是4、1、6、1、-1、 .它们的次数分别是1、2、2、3、1、2.所以4x、-n都是一次单项式;vt、6a2、 ch都是二次单项式;a3是三次单项式.
问题:vt中v和t的指数都是1,它不是一次单项式吗?
结论:不是.根据定义,单项式vt中含有两个字母,所以它的次数应该是这两个字母的指数的和,而不是单个字母的指数,所以vt是二次单项式而不是一次单项式.
生活中不仅仅有单项式,像a+b+c,它不是单项式,和单项式有什么联系呢?
写出下列式子(出示投影)
结论:(1)t-5.(2)3x+5y+2z.
(3)三角尺的面积应是直角三角形的面积减去圆的面积,即 ab-3.12r2.
(4)建筑面积等于四个矩形的面积之和.而右边两个已知矩形面积分别为3×2、4×3,所以它们的面积和是18.于是得这所住宅的建筑面积是x2+2x+18.
我们可以观察下列代数式:
a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.发现它们都是由单项式的和组成的式子.是多个单项式的和,能不能叫多项式?
这样推理合情合理.请看投影,熟悉下列概念.
根据定义,我们不难得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多项式.请分别指出它们的项和次数.
a+b+c的项分别是a、b、c.
t-5的项分别是t、-5,其中-5是常数项.
3x+5y+2z的项分别是3x、5y、2z.
ab-3.12r2的项分别是 ab、-3.12r2.
x2+2x+18的项分别是x2、2x、18. 找多项式的次数应抓住两条,一是找准每个项的次数,二是取每个项次数的最大值.根据这两条很容易得到这五个多项式中前三个是一次多项式,后两个是二次多项式.
这节课,通过探究我们得到单项式和多项式的有关概念,它们可以反映变化的世界.同时,我们也到符号的魅力所在.我们把单项式与多项式统称为整式.
ⅲ.随堂练习
1.课本p162练习
ⅳ.课时小结
通过探究,我们了解了整式的概念.理解并掌握单项式、多项式的有关概念是本节的重点,特别是它们的次数.在现实情景中进一步理解了用字母表示数的意义,发展符号感.
ⅴ.课后作业
1.课本p165~p166习题15.1─1、5、8、9题.
2.预习“整式的加减”.
课后作业:《课堂感悟与探究》
1、解字母表示数量关系的过程,发展符号感。
2、会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及语言表达能力。
会进行整式加减的运算,并能说明其中的算理。
正确地去括号、合并同类项,及符号的正确处理。
一、课前练习:
1、填空:整式包括 和
2、单项式 的系数是 、次数是
3、多项式 是 次 项式,其中二次项
系数是 一次项是 ,常数项是
4、下列各式,是同类项的一组是( )
(a) 与 (b) 与 (c) 与
5、去括号后合并同类项:
二、探索练习:
1、如果用a 、b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 交换这个两位数的。十位数字和个位数字后得到的两位数为
这两个两位数的和为
2、如果用a 、b、c分别表示一个三位数的百位数字、十位数字和个位数字,那么这个三位数可以表示为 交换这个三位数的百位数字和个位数字后得到的三位数为
这两个三位数的差为
●议一议:在上面的两个问题中,分别涉及到了整式的什么运算?
说说你是如何运算的?
▲整式的加减运算实质就是
运算的结果是一个多项式或单项式。
三、巩固练习:
1、填空:(1) 与 的差是
(2)、单项式 、 、 、 的和为
(3)如图所示,下面为由棋子所组成的三角形,
一个三角形需六个棋子,三个三角形需
( )个棋子,n个三角形需 个棋子
2、计算:
(1)
(2)
(3)
3、(1)求 与 的和
(2)求 与 的差
4、先化简,再求值: 其中
四、提高练习:
1、若a是五次多项式,b是三次多项式,则a+b一定是
(a)五次整式 (b)八次多项式
(c)三次多项式 (d)次数不能确定
2、足球比赛中,如果胜一场记3a分,平一场记a分,负一场
记0分,那么某队在比赛胜5场,平3场,负2场,共积多
少分?
3、一个两位数与把它的数字对调所成的数的和,一定能被14
整除,请证明这个结论。
4、如果关于字母x的二次多项式 的值与x的取值无关,
试求m、n的值。
五、小结:整式的加减运算实质就是去括号和合并同类项。
六、作业:第8页习题1、2、3
1.会进行整式加减的运算,并能说明其中的算理,发展有条理的思考及其语言表达能力。
2、通过探索规律的问题,进一步符号表示的意义,发展符号感,发展推理能力。
整式加减的运算。
探索规律的猜想。
尝试练习法,讨论法,归纳法。
投影仪
摆第1个“小屋子”需要5枚棋子,摆第2个需要 枚棋子,摆第3个需要 枚棋子。按照这样的方式继续摆下去。
(1)摆第10个这样的“小屋子”需要 枚棋子
(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?小组讨论。
二、例题讲解:
三、巩固练习:
1、计算:
(1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)
2、已知:a=x3-x2-1,b=x2-2,计算:(1)b-a (2)a-3b
3、列方程解应用题:三角形三个内角的和等于180°,如果三角形中第一个角等于第二个角的3倍,而第三个角比第二个角大15°,那么
(1)第一个角是多少度?
(2)其他两个角各是多少度?
四、提高练习:
1、已知a=a2+b2-c2,b=-4a2+2b2+3c2,并且a+b+c=0,问c是什么样的多项式?
2、设a=2x2-3xy+y2-x+2y,b=4x2-6xy+2y2-3x-y,若│x-2a│+
(y+3)2=0,且b-2a=a,求a的值。
3、已知有理数a、b、c在数轴上(0为数轴原点)的对应点如图:
试化简:│a│-│a+b│+│c-a│+│b+c│
小 结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。
作 业:课本p14习题1.3:1(2)、(3)、(6),2。
初二数学因式分解教案设计篇九
因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。由整式乘法寻求因式分解的方法是一种逆向思维过程,而逆向思维对初一学生还比较生疏,理解起来有必须难度,再者本节还没涉及因式分解的具体方法,所以理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法是教学中的难点。
认知目标:
(1)理解因式分解的概念和好处
(2)认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
潜力目标:由学生自行探求解题途径,培养学生观察、分析、决定潜力和创新潜力,发展学生智能,深化学生逆向思维潜力和综合运用潜力。
情感目标:培养学生理解矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度。
1.目标具体化、明确化,从学生实际出发,具有针对性和可行性,同时便于上课操作,便于检测和及时反馈。
2.课堂教学体现潜力立意。
3.寓德育教育于教学之中。
1.采用以设疑探究的引课方式,激发学生的求知欲望,提高学生的学习兴趣和学习用心性。
2.把因式分解概念及其与整式乘法的关系作为主线,训练学生思维,以设疑——感知——概括——运用为教学程序,充分遵循学生的认知规律,使学生能顺利地掌握重点,突破难点,提高潜力。
3.在课堂教学中,引导学生体会知识的发生发展过程,坚持启发式,鼓励学生充分地动脑、动口、动手,用心参与到教学中来,充分体现了学生的主动性原则。
4.在充分尊重教材的前提下,融教材练习、想一想于教学过程中,增设了由浅入深、各不相同却又紧密相关的训练题目,为学生顺利掌握因式分解概念及其与整式乘法关系创造了有利条件。
5.改变传统言传身教的方式,利用计算机辅助教学手段进行教学,增大教学的容量和直观性,提高教学效率和教学质量。
一、提出问题,创设情境
问题:看谁算得快?(计算机出示问题)
(1)若a=101,b=99,则a2—b2=(a+b)(a—b)=(101+99)(101—99)=400
(2)若a=99,b=—1,则a2—2ab+b2=(a—b)2=(99+1)2=10000
(3)若x=—3,则20x2+60x=20x(x+3)=20x(—3)(—3+3)=0
二、观察分析,探究新知
(1)请每题想得最快的同学谈思路,得出最佳解题方法(同时计算机出示答案)
(2)观察:a2—b2=(a+b)(a—b)①的左边是一个什么式子?右边又是什么形式?
a2—2ab+b2=(a—b)2②
20x2+60x=20x(x+3)③
(3)类比小学学过的因数分解概念,(例42=2×3×7④)得出因式分解概念。
板书课题:§7.1因式分解
1.因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
三、独立练习,巩固新知
练习
1.下列由左边到右边的变形,哪些是因式分解?哪些不是?为什么?(计算机演示)
①(x+2)(x—2)=x2—4
②x2—4=(x+2)(x—2)
③a2—2ab+b2=(a—b)2
④3a(a+2)=3a2+6a
⑤3a2+6a=3a(a+2)
⑥x2—4+3x=(x—2)(x+2)+3x
⑦k2++2=(k+)2
⑧x—2—1=(x—1+1)(x—1—1)
⑨18a3bc=3a2b·6ac
2.因式分解与整式乘法的关系:
因式分解
结合:a2—b2=========(a+b)(a—b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法正好相反。
问题:你能利用因式分解与整式乘法正好相反这一关系,举出几个因式分解的例子吗?
(如:由(x+1)(x—1)=x2—1得x2—1=(x+1)(x—1)
由(x+2)(x—1)=x2+x—2得x2+x—2=(x+2)(x—1)等等)
四、例题教学,运用新知:
例:把下列各式分解因式:(计算机演示)
(1)am+bm(2)a2—9(3)a2+2ab+b2
(4)2ab—a2—b2(5)8a3+b6
练习2:填空:(计算机演示)
(1)∵2xy=2x2y—6xy2
∴2x2y—6xy2=2xy
(2)∵xy=2x2y—6xy2
∴2x2y—6xy2=xy
(3)∵2x=2x2y—6xy2
∴2x2y—6xy2=2x
五、强化训练,掌握新知:
练习3:把下列各式分解因式:(计算机演示)
(1)2ax+2ay(2)3mx—6nx(3)x2y+xy2
(4)x2+—x(5)x2—0。01(6)a3—1
(让学生上来板演)
六、变式训练,扩展新知(计算机演示)
1、若x2+mx—n能分解成(x—2)(x—5),则m=,n=
2、机动题:(填空)x2—8x+m=(x—4),且m=
七、整理知识,构成结构(即课堂小结)
1.因式分解的概念因式分解是整式中的一种恒等变形
2.因式分解与整式乘法是两种相反的恒等变形,也是思维方向相反的两种思维方式,因此,因式分解的思维过程实际也是整式乘法的逆向思维的过程。
3.利用2中关系,能够从整式乘法探求因式分解的结果。
4.教学中渗透对立统一,以不变应万变的辩证唯物主义的思想方法。
八、布置作业
1.作业本(一)中§7。1节
2.选做题:①x2+x—m=(x+3),且m=。
②x2—3x+k=(x—5),且k=。
评价与反馈
1.透过由学生自己得出因式分解概念及其与整式乘法的关系的结论,了解学生观察、分析问题的潜力和逆向思维潜力及创新潜力。发现问题,及时反馈。
2.透过例题及练习,了解学生对概念的理解程度和实际运用潜力,最大限度地让学生暴露问题和认知误差,及时发现和弥补教与学中的遗漏和不足,从而及时调控教与学。
3.透过机动题,了解学生对概念的熟练程度和思维的灵敏性、深刻性、广阔性及探研创造潜力,及时评价,及时矫正。
4.透过课后作业,了解学生对知识的掌握状况与综合运用知识及灵活运用知识的潜力,教师及时批阅,及时反馈讲评,同时对个别学生面批作业,能够更及时、更准确地了解学生思维发展的状况,矫正的针对性更强。
5.透过课堂小结,了解学生对概念的熟悉程度和归纳概括潜力、语言表达潜力、知识运用潜力,教师恰当地给予引导和启迪。
6.课堂上反馈信息除了语言和练习外,学生神情也是信息来源,而且这些信息更真实。学生神态、表情、坐姿都反映出学生对教师教学资料的理解和理解程度。教师应用心捕捉学生在知识掌握、思维发展、潜力培养等各方面全方位的反馈信息,随时评价,及时矫正,随时调节教学。
您可能关注的文档
- 2023年应用化工专业求职信(优质12篇)
- 2023年家长对孩子的评语(优质16篇)
- 最新有关父亲节的体验与感受(实用10篇)
- 灾区慰问信省政府(实用15篇)
- 音乐教师交流心得体会通用(通用14篇)
- 2023年医院志愿者活动心得体会100字优质(大全8篇)
- 土木工程测量实训报告内容(七篇)
- 绿色出行口号10条(大全10篇)
- 网站内容编辑实验报告实用
- 最新怎样写检讨书认错(汇总12篇)
- 学生会秘书处的职责和工作总结(专业17篇)
- 教育工作者分享故事的感悟(热门18篇)
- 学生在大学学生会秘书处的工作总结大全(15篇)
- 行政助理的自我介绍(专业19篇)
- 职业顾问的职业发展心得(精选19篇)
- 法治兴则民族兴的实用心得体会(通用15篇)
- 教师在社区团委的工作总结(模板19篇)
- 教育工作者的社区团委工作总结(优质22篇)
- 体育教练军训心得体会(优秀19篇)
- 学生军训心得体会范文(21篇)
- 青年军训第二天心得(实用18篇)
- 警察慰问春节虎年家属的慰问信(优秀18篇)
- 家属慰问春节虎年的慰问信(实用20篇)
- 公务员慰问春节虎年家属的慰问信(优质21篇)
- 植物生物学课程心得体会(专业20篇)
- 政府官员参与新冠肺炎疫情防控工作方案的重要性(汇总23篇)
- 大学生创业计划竞赛范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 编辑教学秘书的工作总结(汇总17篇)
- 学校行政人员行政工作职责大全(18篇)
相关文档
-
2023年社区科普活动方案范文(模板9篇)
45下载数 119阅读数
-
2023年给母亲节送礼物的心得体会及收获(大全9篇)
31下载数 359阅读数
-
流水别墅心得体会范本(优质10篇)
35下载数 492阅读数
-
警察与医院共建协议书怎么写 警医合作协议书范本(三篇)
47下载数 218阅读数
-
我的幸运日英语myluckyday 我的幸运日英语作文80词(三篇)
14下载数 549阅读数
-
投资资金来源情况说明范文如何写 关于资金情况说明怎么写?(九篇)
47下载数 435阅读数