手机阅读
工作范文
2023年用分析法证明(√2+1 怎么用分析法证明(5篇)
  • 时间:2023-03-23 21:36:18
  • 小编:李耀Y
  • 文件格式 DOC
下载文章
一键复制
用分析法证明√+ 怎么用分析法证明 文件夹
用分析法证明√+ 怎么用分析法证明 文件夹
猜你喜欢 网友关注 本周热点 精品推荐
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?以下是小编为大家收集的优秀
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。银企座谈会主持词和
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编为大家收集的优
在经济发展迅速的今天,报告不再是罕见的东西,报告中提到的所有信息应该是准确无误的。那么我们该如何写一篇较为完美的报告呢?下面是小编带来的优秀报告范文,希望大家能
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?下面是小编为大
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?下面是小编
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我
心中有不少心得体会时,不如来好好地做个总结,写一篇心得体会,如此可以一直更新迭代自己的想法。我们如何才能写得一篇优质的心得体会呢?接下来我就给大家介绍一下如何才
在平日里,心中难免会有一些新的想法,往往会写一篇心得体会,从而不断地丰富我们的思想。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面我帮大家找寻
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。怎样写总结才更能起到其作用呢?总
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。那么我们该如何写一篇较为完美的范文呢?以下是小编为大
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。写总结的时候需要注意什么呢?有哪些格式需要
总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。总结书写有哪些要求呢?我们怎样才能写好一篇总结呢?以下是小编为大家收
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文书写有哪些要求呢?我们怎样才能写好一篇范
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接下来小编就给大家介绍一
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那么我们该如何写一篇较为完美的教案呢?那么下面我就给大家讲一讲教案怎么写才比较
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。相信许多人会觉得范文很难写?这里我整理了一些优秀的范文
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,该为自己下阶段的学习制定一个计划了。相信许多人会觉得计划很难写?以下我给大家整理了一些优质的
时间过得真快,总在不经意间流逝,我们又将续写新的诗篇,展开新的旅程,该为自己下阶段的学习制定一个计划了。那么我们该如何写一篇较为完美的计划呢?以下是小编为大家收
做任何工作都应改有个计划,以明确目的,避免盲目性,使工作循序渐进,有条不紊。那么我们该如何写一篇较为完美的计划呢?下面是小编整理的个人今后的计划范文,欢迎阅读分
时间流逝得如此之快,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。相信许多人会觉得计划很难写?下面是小编为大家带来的计划书优秀范文,希望大家可以喜欢。声乐
制定计划前,要分析研究工作现状,充分了解下一步工作是在什么基础上进行的,是依据什么来制定这个计划的。那关于计划格式是怎样的呢?而个人计划又该怎么写呢?这里给大家
时间就如同白驹过隙般的流逝,我们又将迎来新的喜悦、新的收获,让我们一起来学习写计划吧。计划书写有哪些要求呢?我们怎样才能写好一篇计划呢?以下是小编收集整理的工作
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编为大家收集的优
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编
时间流逝得如此之快,我们的工作又迈入新的阶段,请一起努力,写一份计划吧。怎样写计划才更能起到其作用呢?计划应该怎么制定呢?下面是我给大家整理的计划范文,欢迎大家
当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,
总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,我想我们需要写一份总结了吧。总结怎么写才能发挥它最大的作用呢?这里给大
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
从某件事情上得到收获以后,写一篇心得体会,记录下来,这么做可以让我们不断思考不断进步。我们如何才能写得一篇优质的心得体会呢?下面小编给大家带来关于学习心得体会范
体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。我们如何才能写得一篇优质的心得体会呢?下面我给大家整理了一些心得体会范
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么教案应该怎么制定才合适呢?以下是小编收集整理的教案范
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?下面是我给大家整理的教案范文,欢
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。那么问题来了,教案应该怎么写?下面是小编为大家带来的优秀教案
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面我给大家整
总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以明确下一步的工作方向,少走弯路,少犯错误,提高工作效益,因此,让我们写一份总结
在当下这个社会中,报告的使用成为日常生活的常态,报告具有成文事后性的特点。优秀的报告都具备一些什么特点呢?又该怎么写呢?下面我就给大家讲一讲优秀的报告文章怎么写
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。公司出
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看
在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。相信许多人会觉得范文很难写?这里我整理了一些优秀的范
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。驾驶员管理规章制度十一
心得体会是指一种读书、实践后所写的感受性文字。优质的心得体会该怎么样去写呢?下面小编给大家带来关于学习心得体会范文,希望会对大家的工作与学习有所帮助。机电技术管
总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以使我们更有效率,不妨坐下来好好写写总结吧。那关于总结格式是怎样的呢?而个人
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它有助于我们寻找工作和事物发展的规律,从而掌握并运用这些规律,是时候写一份总
总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。总结书写有哪些要求呢?我们怎样才能写好一篇总结呢?这里给大家分享一些
心中有不少心得体会时,不如来好好地做个总结,写一篇心得体会,如此可以一直更新迭代自己的想法。那么心得体会怎么写才恰当呢?下面我给大家整理了一些心得体会范文,希望
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。相信许多人会觉得范文很难写?下面是小编帮大家
为了保障事情或工作顺利、圆满进行,就不得不需要事先制定方案,方案是在案前得出的方法计划。方案对于我们的帮助很大,所以我们要好好写一篇方案。以下是小编精心整理的方
在现在社会,报告的用途越来越大,要注意报告在写作时具有一定的格式。优秀的报告都具备一些什么特点呢?又该怎么写呢?下面是小编帮大家整理的最新报告范文,仅供参考,希
作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。写范文的时候需要注意什么呢?有哪些格式需要注意呢?接
光阴的迅速,一眨眼就过去了,成绩已属于过去,新一轮的工作即将来临,写好计划才不会让我们努力的时候迷失方向哦。相信许多人会觉得计划很难写?这里给大家分享一些最新的
作为一名教职工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。优秀的教案都具备一些什么特点呢?又该怎么写呢?下面是小编整理的优秀教案范文,欢
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?下面是小编
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧北京市农民工工伤保险
为了确保我们的努力取得实效,就不得不需要事先制定方案,方案是书面计划,具有内容条理清楚、步骤清晰的特点。方案的格式和要求是什么样的呢?下面是小编精心整理的方案策
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。大家想知道怎么样才能写一篇比较优质的范文吗?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。先进经验材料
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。大家想知道怎么样才能写一篇比较优质的教案吗?下面我帮大家找寻
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。教案书写有哪些要求呢?我们怎样才能写好一篇教案呢?下面我帮大家
总结不仅仅是总结成绩,更重要的是为了研究经验,发现做好工作的规律,也可以找出工作失误的教训。这些经验教训是非常宝贵的,对工作有很好的借鉴与指导作用,在今后工作中
作为一名教职工,总归要编写教案,教案是教学蓝图,可以有效提高教学效率。怎样写教案才更能起到其作用呢?教案应该怎么制定呢?以下我给大家整理了一些优质的教案范文,希
作为一名专为他人授业解惑的人民教师,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。优秀的教案都具备一些什么特点呢?下面是小编为大家带来的优秀教案
在经济发展迅速的今天,报告不再是罕见的东西,报告中提到的所有信息应该是准确无误的。那么什么样的报告才是有效的呢?下面是小编为大家带来的报告优秀范文,希望大家可以
在现在社会,报告的用途越来越大,要注意报告在写作时具有一定的格式。那么我们该如何写一篇较为完美的报告呢?下面是小编为大家带来的报告优秀范文,希望大家可以喜欢。述
在现在社会,报告的用途越来越大,要注意报告在写作时具有一定的格式。那么我们该如何写一篇较为完美的报告呢?下面是小编帮大家整理的最新报告范文,仅供参考,希望能够帮
报告是指向上级机关汇报本单位、本部门、本地区工作情况、做法、经验以及问题的报告,报告的格式和要求是什么样的呢?下面是小编为大家带来的报告优秀范文,希望大家可以喜
在当下这个社会中,报告的使用成为日常生活的常态,报告具有成文事后性的特点。那么,报告到底怎么写才合适呢?下面是小编为大家带来的报告优秀范文,希望大家可以喜欢。述
在当下社会,接触并使用报告的人越来越多,不同的报告内容同样也是不同的。写报告的时候需要注意什么呢?有哪些格式需要注意呢?下面我就给大家讲一讲优秀的报告文章怎么写
体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。那么你知道心得体会如何写吗?下面我帮大家找寻并整理了一些优秀的心得体会
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?以下是小编为大家收集的优
方案是从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划。方案对于我们的帮助很大,所以我们要好好写一篇方案。下面是小编为大家收集的方案策划
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文怎么写才能发挥它最大的作用呢?以下是小编为大家收集的优秀范文,欢迎大家分享阅读。区域经济学资料篇一二、
为有力保证事情或工作开展的水平质量,预先制定方案是必不可少的,方案是有很强可操作性的书面计划。方案的格式和要求是什么样的呢?下面是小编帮大家整理的方案范文,仅供
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。写范文的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看
确定目标是置顶工作方案的重要环节。在公司计划开展某项工作的时候,我们需要为领导提供多种工作方案。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?下面是小编帮大
当工作或学习进行到一定阶段或告一段落时,需要回过头来对所做的工作认真地分析研究一下,肯定成绩,找出问题,归纳出经验教训,提高认识,明确方向,以便进一步做好工作,
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?下面我给大家整理了一些优秀范文
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?接下来小编就给大家介
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。相信许多人会觉得范文很难写?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。公司工作展望和建议
总结是对过去一定时期的工作、学习或思想情况进行回顾、分析,并做出客观评价的书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来
在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧正畸科自我鉴定1
范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小
为了确保事情或工作有序有效开展,通常需要提前准备好一份方案,方案属于计划类文书的一种。那么方案应该怎么制定才合适呢?接下来小编就给大家介绍一下方案应该怎么去写,
为有力保证事情或工作开展的水平质量,预先制定方案是必不可少的,方案是有很强可操作性的书面计划。怎样写方案才更能起到其作用呢?方案应该怎么制定呢?以下是我给大家收
为了确定工作或事情顺利开展,常常需要预先制定方案,方案是为某一行动所制定的具体行动实施办法细则、步骤和安排等。写方案的时候需要注意什么呢?有哪些格式需要注意呢?
为确保事情或工作顺利开展,常常要根据具体情况预先制定方案,方案是综合考量事情或问题相关的因素后所制定的书面计划。方案书写有哪些要求呢?我们怎样才能写好一篇方案呢
为确保事情或工作顺利开展,常常要根据具体情况预先制定方案,方案是综合考量事情或问题相关的因素后所制定的书面计划。那么方案应该怎么制定才合适呢?下面是小编帮大家整
2023年用分析法证明(√2+1 怎么用分析法证明(5篇)
2023-03-23 21:36:18    小编:李耀Y

人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。大家想知道怎么样才能写一篇比较优质的范文吗?接下来小编就给大家介绍一下优秀的范文该怎么写,我们一起来看一看吧。

用分析法证明(√2+1 怎么用分析法证明篇一

(用投影片)

师:其中,a表示已知条件,由a可以得到它的许多性质,如b,b1,b2,而由b又可以得到c,由b1还可以得到c1,c2,由b2又可以得到c3,…,而到达结d的只有c,于是我们便找到了a→b→c→d这条通路.当然,有时也可以有其他的途径达到d,比如a→b1→c1→d等.但是有许多不等式的证明题,已知条件很隐蔽,使用综合法证明有一定困难.这一命题若用综合法证明就不知应从何处下手,今天我们介绍用分析法证明不等式,来解决这个问题.(复习了旧知识,并指出单一用综合法证明的不足之处,说明了学习分析法的必要性)

分析法是从结论入手,逆求使它成立的充分条件,直到和已知条件沟通为止,从而找出解题途径.概括地说,就是“从未知,看需知,逐步靠拢已知”.分析法的思路如下:(从下往上看)

(用投影片)

师:欲使结论d成立,可能有c,c1,c2三条途径,而欲使c成立,又有b这条途径,欲使c1成立,又有b1这条途径,欲使c2成立,又有b2,b3两条途径,在b,b1,b2,b3中,只有b可以从a得到,于是便找到了a→b→c→d这条解题途径.(对比综合法叙述分析法及其思路,便于学生深刻理解分析法的实质及其与综合法的关系)

师:用分析法-论证“若a到b”这个命题的模式是:

(用投影片)

欲证命题b为真,只需证命题b1为真,只需证命题b2为真,只需证命题a为真,今已知a真,故b必真.师:在运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱碰,从而加强针对性,较快地探明解题途径.下面举例说明如何用分析法证明不等式.首先解决刚才提出的问题.(板书)

(此题以教师讲解,板书为主,主要讲清证题格式)

师:请看投影,这个题还有一种证法.(投影片)

师:这种证法是综合法.可以看出,综合法有时正好是分析过程的逆推.证法2虽然用综合法表述,但若不先用分析法思索,显然用综合法时无从入手,有时综合法的表述正是建立在分析法思索的基础上,分析法的优越性正体现在此.师:若此题改为

下面的证法是否有错?

(投影片)

只需证63<64,⑦

因为63<64成立,⑧

(学生自由讨论后,请一位同学回答)

生:我认为第②步到⑦步有错,不等式①两边都是负的,不能平方.师:这位同学找到了证明过程中的错误,但错误原因叙述得不够准确.这种证法错在违背了不等式的性质.若a>b>0,则a2>b2;若a

用分析法证明(√2+1 怎么用分析法证明篇二

不等式·用分析法证明不等式·教案

教学目标

通过教学,学生掌握和应用分析法证明不等式. 教学重点和难点

理解分析法的证题格式并能熟练应用. 教学过程设计

师:我们已经学习了综合法证明不等式.综合法是从已知条件入手去探明解题途径,概括地说,就是“从已知,看已知,逐步推向未知”. 综合法的思路如下:(从上往下看)(用投影片)

师:其中,a表示已知条件,由a可以得到它的许多性质,如b,b1,b2,而由b又可以得到c,由b1还可以得到c1,c2,由b2又可以得到c3,„,而到达结d的只有c,于是我们便找到了a→b→c→d这条通路.当然,有时也可以有其他的途径达到d,比如a→b1→c1→d等.

但是有许多不等式的证明题,已知条件很隐蔽,使用综合法证明有一定困难.

这一命题若用综合法证明就不知应从何处下手,今天我们介绍用分析法证明不等式,来解决这个问题.

(复习了旧知识,并指出单一用综合法证明的不足之处,说明了学习分析法的必要性)分析法是从结论入手,逆求使它成立的充分条件,直到和已知条件沟通为止,从而找出解题途径.概括地说,就是“从未知,看需知,逐步靠拢已知”. 分析法的思路如下:(从下往上看)(用投影片)

师:欲使结论d成立,可能有c,c1,c2三条途径,而欲使c成立,又有b这条途径,欲使c1成立,又有b1这条途径,欲使c2成立,又有b2,b3两条途径,在b,b1,b2,b3中,只有b可以从a得到,于是便找到了a→b→c→d这条解题途径.(对比综合法叙述分析法及其思路,便于学生深刻理解分析法的实质及其与综合法的关系)

师:用分析法论证“若a到b”这个命题的模式是:(用投影片)欲证命题b为真,只需证命题b1为真,只需证命题b2为真,„„

只需证命题a为真,今已知a真,故b必真.

师:在运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱碰,从而加强针对性,较快地探明解题途径. 下面举例说明如何用分析法证明不等式.首先解决刚才提出的问题.(板书)

师:这个题目我们曾经用比较法进行过证明,请同学们考虑用分析法如何证明?(学生讨论,请一学生回答)

生:因为b>0,所以b+1>0,去分母,化为a(b+1)<b(a+1),就是a<b,这个式子就是已知条件,所以求证的不等式成立.

(学生理解了分析法的原理,应予以肯定,但这个回答不能作为证明过程,学生往往忽略分析法证明的格式,要及时纠正)

师:这位同学“执果索因”,逐步逆找结论成立的充分条件,直至找到明显成立的不等式为止.很明显,逆找的过程正是把“欲证”由繁化简的过程,因而分析法对于形式复杂的证明题是一种行之有效的方法.

但是作为证明过程,这位同学的回答不符合要求.应该如何证明呢?(请一位同学板书)

=(a+b)(a2-ab+b2)-ab(a+b)

=(a+b)(a2-2ab+b2)

=(a+b)(a-b)2.

由a,b∈r+,知a+b>0,又a≠b,则(a-b)2>0,进而(a+b)(a-b)2>0,即(a3+b3)-(a2b+ab2)>0,所以a3+b3>a2b-ab2.

生乙:我是用分析法证明的.

证法2:

欲证a3+b3>a2b+ab2,即证(a+b)(a2-ab+b2)>ab(a+b),因为a+b>0,课堂教学设计说明

教学过程是不断发现问题、解决问题的思维过程.因此,教师应及时提出问题或引导学生发现问题,然后开拓学生思路,启迪学生智慧,求得问题的解决.一个问题解决后,及时地提出新问题,提高学生的思维层次,逐步由特殊到一般,由具体到抽象,由表面到本质,把学生的思维步步引向深入,直至完成本节课的教学任务.总之,本节课的教学安排是让学生的思维由问题开始,到问题深化,始终处于积极主动状态.

本节课练中有讲,讲中有练,讲练结合.在讲与练的相互作用下,使学生的思维逐步深化.教师提出的问题和例题,先由学生自己解答,然后教师分析与概括.在教师讲解中,又不断提出问题让学生解答和练习,力求在练习中加深理解,尽量改变课堂上教师包办代替的做法.

在安排本节课教学内容时,我注意按认识规律,由浅入深,由易及难,逐渐展开教学内容,让学生形成有序的知识结构.

用分析法证明(√2+1 怎么用分析法证明篇三

用分析法证明

证明:分析法

要证明1/(√2+√3)>√5-2成立

即证√3-√2>√5-

2也就是√3+2>√5+√2

(√3+2)²>(√5+√2)²

7+4√3>7+2√10

即证4√3>2√10

2√3>√10

√12>√10

由于12>10,则易知上式成立,所以1/(√2+√3)>√5-2

若|x|<1,|y|<1,试用分析法证明|(x-y)/(1-xy)|<

1证明:要证|(x-y)/(1-xy)|<1

需证|x-y|<|1-xy|

需证|x-y|^2<|1-xy|^2

需证(x-y)^2<(1-xy)^2

需证x^2-2xy+y^2<1-2xy+(xy)^2

需证x^2+y^2<1+(xy)^2

需证1+(xy)^2-(x^2+y^2)>0

需证(1-x^2)-y^2(1-x^)>0

需证(1-x^2)(1-y^2)>0

|x|<1,|y|<1得到|x|^2<1,|y|^2<1

得到x^2<1,y^2<1

1-x^2>01-y^2>0

所以(1-x^2)(1-y^2)>0

所以|(x-y)/(1-xy)|<1成立

2要使√ac-√bd>√(a-b)(c-d)

必使ac-2√acbd+bd>(a-b)(c-d)

化简得-2√acbd>-ad-bc

即ad+bc>2√acbd

又因为a>b>0,c>b>0,由均值不等式得

3a²-b²=tan²α+2tanαsinα+sin²α-tan²α+2tanαsinα-sin²α

=4tanαsinα

左边=16tan²αsin²α

=16tan²α(1-cos²α)

=16tan²α-16tan²αcos²α

=16tan²α-16sin²α/cos²α*cos²α

=16tan²α-16sin²α

右边=16(tan²α-sin²α)

所以左边=右边

命题得证

4、】

(根6+根7)平方=13+2*根42

2倍的跟2=根8

(根8+根5)平方=13+2根40

2*根42-2*根40大于0

故成立。

补充上次的题。(根3+根2)(根5-根3)不等于1就行了,不必繁琐求大于1.前提是0(1/a)+1/(1-a)>=4

1/>=4

00=0

0=0

0=0成立

其上均可逆

证毕

用分析法证明(√2+1 怎么用分析法证明篇四

分析法证明不等式

已知非零向量a,b,a⊥b,求证|a|+|b|/|a+b|<=√

2【1】

∵a⊥b

∴ab=0

又由题设条件可知,a+b≠0(向量)

∴|a+b|≠0.具体的,即是|a+b|>0

【2】

显然,由|a+b|>0可知

原不等式等价于不等式:

|a|+|b|≤(√2)|a+b|

该不等式等价于不等式:

(|a|+|b|)²≤².整理即是:

a²+2|ab|+b²≤2(a²+2ab+b²)

【∵|a|²=a².|b|²=b².|a+b|²=(a+b)²=a²+2ab+b²

又ab=0,故接下来就有】】

a²+b²≤2a²+2b²

0≤a²+b²

∵a,b是非零向量,∴|a|≠0,且|b|≠0.∴a²+b²>0.推上去,可知原不等式成立。

作为数学题型的不等式证明问题和作为数学证明方法的分析法,两者皆为中学数学的教学难点。本文仅就用分析法证明不等式这一问题稍作探讨。

注:“本文中所涉及到的图表、公式注解等形式请以pdf格式阅读原文。”

就是在其两边同时除以根号a+根号b,就可以了。

下面我给你介绍一些解不等式的方法

首先要牢记一些我们常见的不等式。比如均值不等式,柯西不等式,还有琴深不等式(当然这些是翻译的问题)

然后要学会用一些函数的方法,这是解不等式最常见的方法。分析法,综合法,做减法,假设法等等这些事容易的。

在考试的时候方法最多的是用函数的方法做,关键是找到函数的定义域,还有求出它的导函数。找到他的最小值,最大值。

在结合要求的等等

一句话要灵活的用我们学到的知识解决问题。

还有一种方法就是数学证明题的最会想到的。就是归纳法

这种方法最好,三部曲。你最好把它掌握好。

若正数a,b满足ab=a+b+3,则ab的取值范围是?

解:ab-3=a+b>=2根号ab

令t=根号ab,t^2-2t-3>=0

t>=3ort<=-1(舍)

即,根号ab>=3,故,ab>=9(当且仅当a=b=3是取等号)。

用分析法证明(√2+1 怎么用分析法证明篇五

分析法证明

a²-b²=tan²α+2tanαsinα+sin²α-tan²α+2tanαsinα-sin²α

=4tanαsinα

左边=16tan²αsin²α

=16tan²α(1-cos²α)

=16tan²α-16tan²αcos²α

=16tan²α-16sin²α/cos²α*cos²α

=16tan²α-16sin²α

右边=16(tan²α-sin²α)

所以左边=右边

命题得证

ac到e,延长dc到f,这样,∠ecf与∠a便成了同位角,只要证明∠ecf=∠a就可以了。因为∠ecf与∠acd是对顶角,所以,证明∠ecf=∠a,其实就是证明∠acd=∠a。所以,我们说“同位角相等,两直线平行”与“内错角相等,两直线平行”的证明方法是大同小异的。

其实,这样引辅助线之后,∠bcf与∠b又成了内错角,也可以从这里出发,用“内错角相等,两直线平行”作依据来进行证明。

辅助线当然也不一定要在顶点c处作了,也可以在顶点a处来作,结果又会怎么样呢?即便是在顶点c处作辅助线,我们也可以延长bc到一点g,利用∠dcg与∠b的同位角关系来进行证明。这些作辅助线的方法和证明的方法,我们这里就不一一的讲述了。有兴趣的朋友,自己下去好好想想,自己练练吧!

2分析法证明ac+bd<=根号(a^2+b^2)*根号(c^2+d^2)成立

请问如何证明?具体过程?

要证ac+bd<=根号(a^2+b^2)*根号(c^2+d^2)

只要(ac+bd)^2<=(a^2+b^2)*(c^2+d^2)

只要(ac)^2+(bd)^2+2abcd<=a^2c^2+a^2d^2+(bc)^2+(bd)^

2只要2abcd<=a^2d^2+(bc)^2

上述不等式恒成立,故结论成立!

3用分析法证明已知;tana+sina=a,tana-sina=b,求证(a^2-b^2)^2=16ab

证明:

ax+by≤

1<=(ax+by)^2≤1

<=a^2x^2+b^2y^2+2abxy≤1

因为2abxy≤a^2y^2+b^2x^2(平均值不等式)

所以只需证a^2x^2+b^2y^2+a^2y^2+b^2x^2≤1

而a^2x^2+b^2y^2+a^2y^2+b^2x^2=(a^2+b^2)(x^2+y^2)=1

这应该是分析法吧,我不知道综合法怎么做,不过本质上应该是一样的a²-b²=tan²α+2tanαsinα+sin²α-tan²α+2tanαsinα-sin²α

=4tanαsinα

左边=16tan²αsin²α

=16tan²α(1-cos²α)

=16tan²α-16tan²αcos²α

=16tan²α-16sin²α/cos²α*cos²α

=16tan²α-16sin²α

右边=16(tan²α-sin²α)

所以左边=右边

命题得证

5更号6+更号7>2更号2+更号

5要证√6+√7>√8+√5

只需证6+7+2√42>5+8+2√40

只需证√42>√40

只需证42>40

显然成立

所以√6+√7>√8+√5

6用分析法证明:

若a>0b>0,a+b=1,则3^a+3^b<

4要证3^a+3^b<4

则证4-3^a-3^b>0

则证3^1+1-3^a-3^b>0

由于a+b=1

则证3^a*3^b-3^a-3^b+1>0

则证(1-3^a)*(1-3^b)>0

由于a>0,b>0,a+b=1,则0

所以1-3^a>0,1-3^b>0

得证

几何证明分析法

学习数学,关键要学会数学分析方法,特别是几何证明,分析方法显得更加重要。

这里,我们依托人教版七年级《数学》下册第91页复习题7的第6题进行讲解。

6、如图,∠b=42°,∠a+10°=∠1,∠acd=64°,求证:ab//cd”

用分析法证明:

若a>0b>0,a+b=1,则3^a+3^b<

4要证3^a+3^b<4

则证4-3^a-3^b>0

则证3^1+1-3^a-3^b>0

由于a+b=

1则证3^a*3^b-3^a-3^b+1>0

则证(1-3^a)*(1-3^b)>0

由于a>0,b>0,a+b=1,则0

所以1-3^a>0,1-3^b>0

得证

几何证明分析法

学习数学,关键要学会数学分析方法,特别是几何证明,分析方法显得更加重要。

这里,我们依托人教版七年级《数学》下册第91页复习题7的第6题进行讲解。

6、如图,∠b=42°,∠a+10°=∠1,∠acd=64°,求证:ab//cd”

您可能关注的文档