手机阅读

2023年二次函数教学反思简短(通用12篇)

格式:DOC 上传日期:2023-11-11 01:57:41 页码:8
2023年二次函数教学反思简短(通用12篇)
2023-11-11 01:57:41    小编:zdfb

从工作总结中可以看出,我们需要更加高效地管理时间。总结的目的是为了更好地认识和改进自己的行为和表现,以便达到更好的发展和成长。总结范文的内容既有对成绩的总结,也有对经验的总结,可以帮助我们更好地了解自己的长处和不足。

二次函数教学反思简短篇一

这节课我是采用先让学生按照学案的提示,自主预习课本,受到课本所给出的分析过程的思维限制,很容易把问题解决了,但没有放手让学生从不同角度去尝试建立坐标系,体会各种情况下所建立的坐标系是否有利于点的表示,没有激发学生学习的热情,没有给予学生以启迪。用二次函数知识解决实际问题是本章学习的一大难点,遇到实际问题学生往往无从下手,学生在解题过程中遇到一个新的问题该如何去联想?联想什么?怎样联想?这与课堂教学过程中老师解题方法的讲授至关重要,老师在课堂教学过程中应如何引导学生判断、分析、归类。为此我在另一个班采取了以下的教学过程,突出以学生为主体,教师只是引导学生经历分析——观察——抽象——概括——发现新知——解决新知的过程。为了让学生发现方法、领悟方法、运用方法,同时我特意给学生留有一定的思考和交流讨论的时间。

通过两节课的对比,我发现数学的自主学习,不能千遍一律,应针对具体内容采取灵活多变的方法。例如一些简单的计算的课堂可以先让学生自主预习,独立进行探究,完成课本上的填空,发现规律;然后小组共同归纳,总结规律,应用规律学习例题,解决问题。一些需要思维的课堂活需要探讨的课堂,我认为应该利用学案,不让学生看课本,教师引导学生进行探究活动,让学生自己发现关系、规律。总之数学的自主学习课应根据课程内容的不同,采取不同的方法,才会收到较好的效果。

二次函数教学反思简短篇二

这节课是人教版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。

整个教学过程主要分为三部分:

第一部分是前置性作业,前置作业是前一天发给学生的,主要涉及如何作图、一次函数和反比例函数的性质等问题。我的设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让学生复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究能力。

第二部分是学习探究,探求活动前先让一名学生读了学习目标,让大家带着目标去探究。探究活动一是让学生在坐标纸上画出二次函数y=ax2的图象。画图的过程包括列表、描点、连线。列表过程是我引导学生取点的,其间我引导大家要明确取点注意的事项,比如代表性、易操作性。这样学生在下一个环节就能游刃有余。学生在我的引导下顺利地画出了函数的图象。紧接着我让学生按照学案的要求自主探讨当a0时函数y=ax2的性质。探究活动二是独立画出函数y=ax2的图象,然后是自主探讨当a0时函数y=ax2的性质。探讨函数的性质主要从开口方向、对称轴、增减性、顶点坐标和最值方面入手,让学生从特殊函数来归纳总结一般函数的性质。应该说探究活动二在活动一的基础上让学生锻炼了自我学习的能力,学生们完成的很好。探索活动三是小组合作活动。观察自己画出的两个图象,它们代表函数y=ax2的两种情况,找出a的符号不同时他们的相同点、不同点和联系点。这个环节能充分发挥小组合作的优势,让学生在谈论中体会分类思想。小组讨论完毕后我让学生展示他们的成果,大部分学生跃跃欲试,他们讨论的很全面,出乎我的预料。这里面还有个知识点我是用几何画板演示的,就是通过改变a的值让学生们观察图象的开口方向和开口宽度。几何画板在此起到了突破难点的作用,让我真正体会到了掌握几何画板对自己的教学是多么的有利。第三部分是课堂检测。最后五分钟时我让学生们独立完成课堂检测部分题目。课堂检测共出了四个小题(基础题)一个应用题(选做题),下课铃声响了,大部分的同学还没有完成选做题,所以我就让同桌交换试卷,公布前四个基础题的答案。从当堂的反馈来看,绝大多数同学能掌握本节课的知识,达到了学习目标中的要求。

本课的优点主要包括:

1、教态自然,能注重身体语言的作用,声音洪亮,提问具有启发性。

2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。

3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点。

本课的不足之处表现在:

1、知识的生成过程体现的不够具体。在活动一中,虽然引导学生选点和列表,但是没有在黑板上演示作图的过程,虽然说明白了选点的注意事项但是学生还是被动的接受,他们不一定能理解为什么要选那个点。

3、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。

4、学生在回答问题的过程中我老是打断学生。提问一个问题,学生说了一半,我就迫不及待地引导他说出下一半,有的时候是我替学生说了,这样学生的思路就被我打断了。破坏学生的思路是我们教师最大的毛病,此顽疾不除,教学质量难以保证。

5、合作学习的有效性不够。其实在演示几何画板的过程中,学生在a0的情况下能得到a越大开口越小,a0的情况下a越小开口越大。但是综合起来学生就困难的多了。这个时候不妨让大家小组讨论完成知识的总结。有这样一种说法:你我各一个苹果,交换之后,你我还是一个苹果;你我各有一种思想,交换之后,你我却有了两种思想。这很形象地说出了合作学习的好处。教师把学习的主动权交给学生,把思维的过程还给学生,问题在分组讨论中得以共同解决。只有真正把自主、探究、合作的`学习方式落到实处,才能培养学生成为既有创新能力,又能适应现代社会发展的公民。

二次函数教学反思简短篇三

昨天我们学习了用函数的观念看一元二次方程,我通过类比引出二次函数与一元二次方程之间的关系,并结合具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系,然后介绍了用图象法求一元二次方程近似解的过程。这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

由于九年级学生已经具备一定的抽象思维能力,再者,在八年级时已经学习了一次函数与一元一次方程的关系,因而,采用类比的方法在学生预习自学的基础上放手让学生大胆地猜想、交流,分组合作,同时设定一定的问题环境来引导学生的探究过程,最后在老师的释疑、归纳、拓展、总结的过程中结束本节课的教学。在知识掌握上,学生对二次函数的图象及其性质和一元二次方程的解的情况都有所了解,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的基础上进行交流合作学习应该不是难题。本节课的知识障碍,本节课的主要目的在于建立二次函数与一元二次方程之间的联系,渗透数形结合的思想,而不仅仅是利用函数的图象求一元二次方程的近似解。

总之,在教学过程中,我始终遵循着“有效的数学学习活动不能单独地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”这一《新课程标准》的精神,注意发挥学生的主体作用,让学生通过自主探究、合作学习来主动发现问题、提出问题、解决问题,实现师生互动,通过这样的教学实践取得了一定的教学效果,我再次认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,使他们能够在独立思考与合作学习交流中解决学习中的问题。

二次函数教学反思简短篇四

二次函数问题在整个初中阶段既是重点又是难点,其应用题综合性比较强,知识涉及面广,对学生能力的要求更高,因此成为教学中的重点,也成为学习的一大难点。在升学考试中占有相当大的分值,往往又以中档题或高档题的形式出现,成为中考的压轴题。作为教师在组织教学的过程中,应注意选择合适的教学方法分散其难点。若采用分类教学,学生易于掌握,针对不同的题型进行训练,短期内确实有利于提高学生的学习成绩。但从长远看,这样做容易使学生形成思维定势,不利于思维能力和创新能力的培养。教师可以针对不同的学生分梯度设置不同的题型,放手让学生自主探索,自己去感悟,疑难问题通过小组合作学习来解决,同时教师做适当的点拨,这样可以激发学生学习数学的兴趣,让不同的学生都得到发展。

我认为初中阶段应从以下几个方面来处理好二次函数的应用问题:

一、注重与代数式知识的类比教学,触及函数知识。

现在人教版教材把函数提前到初二进行教学,我认为这是很好的整合。初二的学生对基本概念还是比较难理解,但能够要求学生有意识的去理解函数这一概念,逐步接触函数的知识和建模思想,认识到数学问题来源于生活应用于生活,建模后又高于生活。不管是列代数式还是代数式的求值,只要变换一个字母或量的数值,代数式的值就随之变化,这本身就可以培养学生的函数意识。

二、注意在方程教学中有意识渗透函数思想。

方程与函数之间具有很深的联系。在学习方程时要有意识的打破只关注等量关系而忽略分析数量关系的弊端,这是对函数建模提供的最好的契机。教师在组织教学中,特别是应用题教学,不能只让学生寻找等量关系,而不注重学生分析量与量、数与数之间的内在联系能力的培养,从而更加大了学生学习函数的难度。不管是一元方程还是二元方程应用题教学中,应该训练学生分析问题中的量与量关系的能力,让学生树立只要有量就应该也可以用字母去表示它,不要怕量多字母多,量表示好了再通过数量关系逐步缩少字母即可。这样就为后续函数的学习做好了铺垫。

三、通过数形结合方法体验函数建模思想。

不管是长度、角度还是面积的有关计算,都应该通过适当变换数据来树立函数思想。图形具有丰富性与直观性,图形变化具有条件性,因此说图形教学相比纯粹数量计算教学更能够体现函数思想。

函数思想的建立,应用题解题方式的定型绝不是一蹴而就的,它需要慢慢的渗透与慢慢体验的过程。从这个意义上说,二次函数应用题的教学不需要分类。二次函数的学习是把以前学习的内容进行适当加深或以崭新的视角重新审视,因此二次函数应用题的解决,需要师生在教与学中有意识的树立函数思想。正是二次函数的这种综合性,要求教师在组织教学中把这一难点消化在平日教学中,而不是简单的把二次函数应用题进行分类来加重学生的负担。

二次函数教学反思简短篇五

本节课在二次函数y=ax2和y=ax2+c的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自性质。旨在全面掌握所有二次函数的图象和性质的变化情况。同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c。符合学生的认知规律,体会建立二次函数对称轴和顶点坐标公式的必要性。

本节课我是这样设计引入的。

[师]y=3x2的图象有何特点?

[生]很快能说出函数图象以及相关的性质。

[师]y=3x2+5的图象有何特点?y=3x2+5和y=3x2的图象有何关系?

此处的安排是为了让学生明确加上5会使函数图象向上平移5个单位,为本节教学y=a(x-h)2和y=a(x-h)2+k的位置关系埋下伏笔。当然在前一节课已经让学生明确了y=ax2和y=ax2+c的位置关系。并告诉学生口诀上加下减,位变形不变。

[师]y=3x2-6x+5的图象与y=3x2有何关系?

[生]猜想:向上平移5个单位,向左右平移6个单位。

[师]到底向左还是向右?或者是否就是我们所想的这样先向上平移5个单位,向左右平移6个单位?我们这节课就来研究二次函数y=ax2+bx+c的图象(板书课题)。

教师和学生一起对y=3x2-6x+5进行配方化为y=3(x-1)2+2的形式。

此处的`处理感觉很不自然,但是从y=3x2-6x+5再引出新课这一作法又让我不舍得放弃,希望行家提出好的过渡方法。

[师]研究y=3(x-1)2+2的图象比较复杂,你准备先研究什么函数的图象?

[生]可以先研究y=3(x-1)2的图象。

前面复习过y=ax2和y=ax2+c的位置关系,而且经过课题学习学生已经学会了把复杂问题通过先简单化的这一学习方式。

让学生完成课本p46的表格。

在校对答案时我是这样处理的。先让校对3x2的值,然后再填写3(x-1)2的值,但并不是全部校对,在回答到x=-1时,y=12时,停顿。让学生不急着给出下面的答案,先让学生思考从表格中发现了什么,学生很快的发现第三排的值刚好是把第二排的值向右平移一个单位。由此猜想当x=0时,y=3。然后引导学生验算。发现刚好相等。继续完成表格的第三排的函数值,发现都有相同的特点。

此处的设计是要让学生学会观察,从表格里发现函数图象的平移。

[生]猜想:把y=3x2图象向右平移一个单位就可以得到y=3(x-1)2的函数图象。

[师]请大家根据表格所提供的坐标描点、连线,完成y=3(x-1)2的函数图象。看与我们的猜想是否一样。

通过学生的描点、连线、并观察发现确实符合自己的猜想。经历这样的研究过程学生能形成较为深刻的印象。

教师进行对比教学。继续研究了y=3(x+1)2与y=3x2的图象位置关系。进而研究他们的图象的性质,然后再研究了y=3(x-1)2+2与y=3x2和y=3(x-1)2三者的联系和区别。总结出口诀上左加下右减,位变形不变便于学生记忆。

函数的教学,尤其是二次函数是学生普遍感觉较为抽象难懂的知识。在教学过程中,除了让学生多动手画图象,加深学生对函数图象的了解,加深他们对函数性质的了解外。更重要的是让学生参与到函数图象和性质的探索中去。要利用一切可以利用的材料来帮助学生理解所学的知识。本节中通过表格上函数值的变化让学生猜想函数图象的位置变化,给学生留下较深刻的印象。然后加以口诀的形式,学生普遍能较好的掌握图象的平移规律。

二次函数教学反思简短篇六

本节的学习内容是在前面学过二次函数的概念和二次函数的图像和性质的基础上,运用图像变换的观点把二次函数的图像经过一定的平移变换,而得到二次函数的图像。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意“类比”前一节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。

通过本节课教学,得出几点体会:

1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。

2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。

3、要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。

本节课,我合理、充分利用了多媒体教学的手段,利用powerpoint,《几何画板》这两种软件制作了课件,特别是《几何画板》软件的应用,画出了标准、动画形式的二次函数的`图像,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数的有关性质,充分体现了“数形结合”的数学思想。为了突出重点,攻破难点,我要求学生“先观察后思考”、“先做后说”、“先讨论后总结”,“师生共做”充分体现了教学过程中以学生为主体,老师起主导作用的教学原则。本节课,让学生有观察,有思考,有讨论,有练习,充分调动了学生的学习兴趣,从而为高效率、高质量地上好这一堂课作好了充分的准备。

二次函数教学反思简短篇七

1、学习图像之前,让学生正确画平面直角坐标系,准备不同颜色的彩笔。

2、每节课基本都是学生自己画图、比较、讨论、总结。本节画出的图像比较,和上节学习的图像比较,和小组其他同学比较,看形状、看开口、看对称轴、看顶点有什么相同点和不同的地方,尽可能自己总结函数的图像。

3、小组展示成果,其他小组听、评和补充。总结出顶点形式的图像性质。

4、画出函数的图像,根据图像确定ahk的数值。

5、注意二次函数的对称性,步骤是列表、描点、连线。取值时从对称轴开始取,注意左右对称取值。

二次函数教学反思简短篇八

二次函数是初中阶段研究的一个具体、重要的函数,在历年来中考题中都占有较大的分值。二次函数不仅和学生前面学习的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想有着重要的作用。而二次函数的概念是后面学习二次函数的基础,在整个教材体系中起着承上启下的作用。

本节课的内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决实际问题。为此,先让学生复习了函数及一次函数的相关内容,然后设计具体的问题情境让学生自己推导出一个二次函数,并观察、总结它与一次函数的不同,在此基础上逐步归纳出二次函数的一般表达式,最后通过习题巩固二次函数的概念并解决一些简单的数学问题。

我个人认为,本节课的成功之处是:一是在教学设计上“步步为营”,学生的思维能力“层层提高”。在教学设计上,根据内容的需要,我合理设计具有针对性的问题,借助学生已有的知识展开教学,通过解决问题,充分激发学生的求知欲,调动学生学习的积极性和主动性。

二是在学习的过程中,不仅注重对学生知识的教授,更注重教给学生学习和思考的方法,提高学生独立发现问题、解决问题的能力,让学生时时体验到成功的快乐。

三是在整个教学过程中,注重不同层次学生的发展,不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到吃不饱现象,因此在后面的练习设计中,也有针对性的习题,对这部分学生提高也是很有帮助的。

不足之处表现在:

1、由于学生对一次函数的遗忘,因此复习占用的太多的时间,导致课后练习没完成。

2、学生自学环节,要求不够细致,学生学的不够深入只是看了教材,而未挖掘出教材以外的东西。

3、由于时间紧张小结的不够完整。

总之,本节课的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。

二次函数教学反思简短篇九

本节课重点是,结合图象分析二次函数的有关性质,查缺补漏,进一步理解掌握二次函数的基础知识。要想灵活应用基础知识解答二次函数问题,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,与生活实际密切联系,学生对生活中的“二次函数”感知颇浅,针对学生的认知特点,设计时做了如下思考:一、按知识发展与学生认知顺序,设计教学流程:首先通过复习本章的知识结构让学生从整体上掌握本章所学习的内容,从而才能在此基础上运用自如,如鱼得水;二、教学过程中注重引导学生对数学思想应用基础知识解答,然后小组进行交流讨论,老师点评,起到很好的效果。这堂课老师教得轻松,学生学得愉快,每个学生都参与到活动中去,投入到学习中来,使学习的过程充满快乐和成功的体验,促使学生自主学习,勤于思考和于探究,形成良好的学习品质。

数学教学活动是师生积极参与、交往互动、共同发展的过程,从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得数学的基础知识、基本技能、基本思想和基本活动经验,促使学生主动地学习,不断提高发现提出问题、分析问题和解决问题的能力;设计教学方案、进行课堂教学活动时,应当经常考虑如下问题:

(1)如何使他们愿意学,喜欢学,对数学感兴趣。

(2)如何让学生体验成功的喜悦,从而增强自信心。

(4)培养学生合作学习的互助精神和独立解决问题的能力。

二次函数教学反思简短篇十

这节课是安排在学了一次函数、反比例、一元二次方程之后的二次函数的第一节课,学习目标是要学生懂得二次函数概念,能分辨二次函数与其他函数的不同,能理解二次函数的一般形式,并能初步理解实际问题中对自变量的取值范围的限制。依我看,这节课的重点该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上。一上完这节课后就有所感触:

1、二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。许多实际问题往往可以归结为二次函数加以研究。

2、教学要重视概念的形成和建构,在概念的学习过程中,从丰富的现实背景和学生感兴趣的问题出发,通过学生之间的合作与交流的探究性活动,引导分析实际问题,如探究面积问题,利息问题、观察表格找规律及用关系式表示这些关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系。

3、课堂教学要求老师除了深入备好课外,还要懂得根据学生反馈来适时变通,组织学生讨论时该放则放,该收则收,合理使用好课堂45分钟,尽可能把课堂还给学生。

我觉得在教学中,只光热情还不够,没有积极调动学生的学习热情,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。总之,在数学教学中不但要善于设疑置难,激发学生的学习热情,同时要加强学生自学能力的培养,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。

二次函数教学反思简短篇十一

本节的学习内容是在前面学过二次函数的概念和二次函数的图像和性质的基础上,运用图像变换的观点把二次函数的图像经过一定的平移变换,而得到二次函数的图像,二次函数的图像和性质(第三课时)教学反思。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意“类比”前一节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。

通过本节课教学,得出几点体会:

1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。

2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的性质,教学反思《二次函数的图像和性质(第三课时)教学反思》。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。

3、要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。

本节课,我合理、充分利用了多媒体教学的手段,利用powerpoint,《几何画板》这两种软件制作了课件,特别是《几何画板》软件的应用,画出了标准、动画形式的二次函数的图像,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数的有关性质,充分体现了“数形结合”的数学思想。为了突出重点,攻破难点,我要求学生“先观察后思考”、“先做后说”、“先讨论后总结”,“师生共做”充分体现了教学过程中以学生为主体,老师起主导作用的教学原则。本节课,让学生有观察,有思考,有讨论,有练习,充分调动了学生的学习兴趣,从而为高效率、高质量地上好这一堂课作好了充分的准备。

二次函数教学反思简短篇十二

这是九年级刚上完二次函数新课后的一堂复习课,本堂课的目的是通过用多种方法求二次函数的解析式,从而培养学生的一题多解能力及探索意识。

问题:已知二次函数的图象过点(1,0),在y轴上的截距为3,对称轴是直线x=2,求它的函数解析式。

(给学生充分的思考时间)

师:哪位同学能把解法说一下?

a+b+c=0

c=3

又因为对称轴是x=2,所以—b/2a=2

所以得a+b+c=0

c=3

—b/2a=2

解得a=1

b=—4

c=3

所以所求解析式为y=x2—4x+3

师:两点代入二次函数一般式必定出现不定式,能想到对称轴,从而以三元一次方程组解得a,b,c,不错!除此方法外,还有没有其他方法,大家可以相互讨论一下。

(同学们开始讨论,思考)

a+k=0

4a+k=3

解得a=1

k=—1

故所求二次函数的解析式为y=(x—2)2—1,即y=x2—4x+3

师:非常好。那还有没有其他方法,请大家再思考一下。

(学生沉默一会儿,有人举手发言)

师:设得巧妙,这个函数解析式只含一个字母,这给运算带来很大方便,很好,很善于思考。大家再想想看,是否还有其他解题途径。

(学生们又挖空心思地思考起来,终于有一学生打破沉寂)

所以二次函数解析式为y=(x—1)(x—3),即y=x2—4x+3

(同学们给生d以热烈的掌声)

师:函数本身与图形是不可分割的,能数形结合,非常不错,用两根式解此题,非常独到。

(至此下课时间快到,原先设计好的三题只完成一题,但看到学生的探索的可爱劲,不能按课前安排完成内容又有何妨呢?)

师:最后,请同学们想一下,通过本堂课的学习,你获得了什么?

生1:我知道了求二次函数解析式方法有:一般式,顶点式,两根式。

生2:我获得了解题的能力,今后做完一道题目,我会思考还有没有更好的方法。

1。每一个学生都有丰富的知识体验和生活积累,每一个学生都会有各自的思维方式和解决问题的策略。而我对他们的能力经常低估,在以往的上课过程中,总喋喋不休,深怕讲漏了什么,但一堂课下来,学生收获甚微。本堂课,我赋予学生较多的思考和交流的机会,试着让学生成为数学学习的主人,我自己充当了一回数学学习的组织者,没想到取得了意想不到的效果,学生不但能用一般式,顶点式解决此题,还能深层挖掘巧妙地用两根式解决此题,学生的潜力真是无穷。

2。通过本堂课的教学,我想了很多。新课程改革要求教师要有现代的教学观、学生观,才能培养出具有创新精神和实践能力的下一代。所以教师应当走下“教坛”,与学生在民主、平等的氛围中交流意见,共同探讨问题。学生的主动参与是学习活动有效进行的关键所在,因此教师还应该在学生“学”上进行改革,从学生的实际出发,从学生的生活出发,才能把学生从被动听的束缚中解放出来,使学生真正成为学习的主人。本节课教师始终与学生保持着平等和相互尊重,为学生探究学习提供了前提条件。

问题是无穷尽而活的,只有让学生主动探索,才能真正地理解,巩固知识点,从而运用知识点,即真正知其所以然。今后,我将不断尝试,不断完善自身,使学生的讨论和思考更有意义。

您可能关注的文档