手机阅读

高中数学说课稿的评价标准(优秀16篇)

格式:DOC 上传日期:2024-02-26 03:08:03 页码:9
高中数学说课稿的评价标准(优秀16篇)
2024-02-26 03:08:03    小编:琴心月

通过总结,我们可以发现问题并寻找改进的方法。写一篇较为完美的总结,首先要明确总结的目的和范围。欢迎大家参考以下总结范文,以便更好地完成自己的总结。

高中数学说课稿的评价标准篇一

知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。

过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。

情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。

重点是椭圆的定义及标准方程,难点是推导椭圆的标准方程。

教学环节。

教学内容和形式。

设计意图。

复习。

提问:

(1)圆的定义是什么?圆的标准方程的形式怎样?

(2)如何推导圆的标准方程呢?

激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。

(略)。

操作-----交流-----归纳-----多媒体演示-----联系生活。

在动手过程中,培养学生观察、辨析、归纳问题的能力。

在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的'观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。

教学环节。

注:1、平面内。

2、若,则点p的轨迹为椭圆。

若,则点p的轨迹为线段。

若,则点p的轨迹不存在。

情境1.生活中,你见过哪些类似椭圆的图形或物体?

情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.(教师用多媒体演示)。

情境3.观看天体运行的轨道图片。

准确理解椭圆的定义。

渗透数学源于生活,圆锥曲线在生产和技术中有着广泛的应用。

例:已知点、为椭圆的两个焦点,p为椭圆上的任意一点,且,其中,求椭圆的方程。

点拨-----板演-----点评。

(1)建系设点。

(2)写出点的集合。

(3)写出代数方程。

(4)化简方程:

1请一位基础较好,书写规范的同学板演。

(5)证明:讨论推导的等价性。

掌握椭圆标准方程及推导方法。

培养学生战胜困难的意志品质并感受数学的简洁美、对称美。

养成学生扎实严谨的科学态度。

应用。

举例。

教学环节。

例1.(1)椭圆的焦点坐标为:

(2)椭圆的焦距为4,则m的值为:

活动过程:思考-----解答-----点评。

活动过程:思考-----解答-----点评。

变式1已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。

求椭圆的标准方程。

思考-----解答-----点评。

认清椭圆两种标准方程形式上的特征。

提问:本节课学习的主要知识是什么?你学会了哪些数学思想与方法?

活动过程:教师提问-----学生小结-----师生补充完善。

让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力。

作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、

分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。

8.1椭圆及其标准方程。

本节课的设计力图贯彻"以人的发展为本"的教育理念,体现"教师为主导,学生为主体"的现代教学思想。在对椭圆定义的讲授中,遵循从生动直观到抽象概括的教学原则和教学途径,通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力;让椭圆生动灵活地呈现在学生面前,更有助于学生理解椭圆的内涵和外延。对本课另一难点标准方程推导的讲授中,在关键处设疑,以疑导思,让学生先从目的、再从方法上考虑,引导学生对比、分析,师生共同完成。通过经历椭圆方程的化简,增强了学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。设计的例题及变式练习,充分利用新知识解决问题,使所学内容得以巩固。变式(2)的设计让学生站在方程的角度认清椭圆两种标准方程形式上的特征,将学生的思维提升到了一个新的高度。课后分层次布置作业,帮助学生巩固所学知识;课后探索更为学有余力的学生留有进一步探索、发展的空间。在教学中借助多媒体生动、直观、形象的特点来突出教学重点。自始至终很好地调动学生的积极性,挖掘他们的内在潜能,提高学生的综合素质。

高中数学说课稿的评价标准篇二

1、进一步熟练掌握求动点轨迹方程的基本方法。

2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

(二)过程与方法

1、培养学生观察能力、抽象概括能力及创新能力。

2、体会感性到理性、形象到抽象的思维过程。

3、强化类比、联想的方法,领会方程、数形结合等思想。

(三)情感态度价值观

1、感受动点轨迹的动态美、和谐美、对称美。

2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气。

教学重点:运用类比、联想的方法探究不同条件下的轨迹。

教学难点:图形、文字、符号三种语言之间的过渡。

教学方法:观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

教学手段:利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

教学模式:重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。

1、创设情景,引入课题

生活中我们四处可见轨迹曲线的影子。

演示:这是美丽的城市夜景图。

演示:许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多。

演示建筑中也有许多美丽的轨迹曲线。

设计意图:让学生感受数学就在我们身边,感受轨迹,曲线的动态美、和谐美、对称美,激发学习兴趣。

2、激发情感,引导探索

靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1。

高中数学说课稿的评价标准篇三

导数是微积分的核心概念之一,它为研究函数提供了有效的方法. 在前面几节课里学生对导数的概念已经有了充分的认识,本节课教材从形的角度即割线入手,用形象直观的“逼近”方法定义了切线,获得导数的几何意义,更有利于学生理解导数概念的本质内涵. 这节课可以利用几何画板进行动画演示,让学生通过观察、思考、发现、思维、运用形成完整概念. 通过本节的学习,可以帮助学生更好的体会导数是研究函数的单调性、变化快慢等性质最有效的工具,是本章的关键内容。

2、教学的重点、难点、关键

教学重点:导数的几何意义、切线方程的求法以及“数形结合,逼近”的思想方法。

教学难点:理解导数的几何意义的本质内涵

1) 从割线到切线的过程中采用的逼近方法;

2) 理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等.

根据新课程标准的要求、学生的认知水平,确定教学目标如下:

1、知识与技能 :

通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。

过程与方法:

通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。

3、情感态度与价值观:

对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:

学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了

自主 、合作、探究的学习方法。

教具: 几何画板、幻灯片

1.创设情境

学生活动——问题系列

问题1 平面几何中我们是怎样判断直线是否是圆的割线或切线的呢?

问题2 如图直线l是曲线c的切线吗?

(1)与 (2)与 还有直线与双曲线的位置关系

问题3 那么对于一般的曲线,切线该如何定义呢?

【设计意图】:通过类比构建认知冲突。

学生活动——复习回顾

导数的定义

【设计意图】:从理论和知识基础两方面为本节课作铺垫。

2.探索求知

学生活动——试验探究

问一;求导数的步骤是怎样的?

第一步:求平均变化率;第二步:当趋近于0时,平均变化率无限趋近于的常数就是。

【设计意图】:这是从“数”的角度描述导数,为探究导数的几何意义做准备。

问二;你能借助图像说说平均变化率表示什么吗?请在函数图像中画出来。

【设计意图】:通过学生动手实践得到平均变化率表示割线pq的斜率。

问三;在的过程中,你能描述一下割线pq的变化情况吗?请在图像中画出来。

【设计意图】:分别从“数”和“形”的角度描述的过程情况。从数的角度看,,q();从形的角度看, 的过程中,q点向p点无限趋近,割线pq趋近于确定的位置,这个位置的直线叫做曲线在 处的切线。

探究一:学生通过几何画板的演示观察割线的变化趋势,教师引导给出一般曲线的切线定义。

【设计意图】: 借助多媒体教学手段引导学生发现导数的几何意义,使问题变得直观,易于突破难点;学生在过程中,可以体会逼近的思想方法。能够同时从数与形两个角度强化学生对导数概念的理解。

问四;你能从上述过程中概括出函数在处的导数的几何意义吗?

【设计意图】:引导学生发现并说出:,割线pq切线pt,所以割线

pq的斜率切线pt的斜率。因此,=切线pt的斜率。

1、通过学生参加活动是否积极主动,能否与他人合作探索,对学生的学习过程评价;

2、通过学生对方法的选择,对学生的学习能力评价;

3、通过练习、课后作业,对学生的学习效果评价.

5、本节课设计目标力求使学生体会微积分的基本思想,感受近似与精确的统一,运动和静止的统一,感受量变到质变的转化。希望利用这节课渗透辨证法的思想精髓.

高中数学说课稿的评价标准篇四

抛物线焦点性质的探索(说课)

一、

1 教材的地位与作用 “抛物线焦点的性质”是抛物线的重要性质之一,它是在学生学习抛物线的一般性质的基础上,学习和研究的抛物线有关问题的基本工具之一;本节教材对于培养学生观察、猜想、概括能力和逻辑推理能力具有重要的意义。

2 教学目的 全日制普通高级中学《数学教学大纲》第22页“重视现代教育技术的运用”中明确提出:在数学教学过程中,应有意识地利用计算机网络等现代信息技术,认识计算机的智能图形、快速计算、机器证明、自动求解及人机交互等功能在数学教学中的巨大潜力,努力探索在现代信息技术支持下的教学方法、教学模式。设计和组织能吸引学生积极参与的数学活动,支持和鼓励学生运用信息技术学习数学、开展课题研究,改进学习方式,提高学生的自主学习能力和创新意识。因此本人在现行高中新教材(试验修订本·必修)数学第二册(上)抛物线这一节内容为背景材料,以多媒体网络教室为场地,以《几何画板》为教学工具与学习工具,设计了一堂《抛物线焦点性质的探索》,具体目标如下:

(2) 能力目标:使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型;培养辩证唯物主义思想和辩证思维能力(主要包括量变与质变,常量与变量,运动与静止)培养学生通过计算机来自主学习的能力与创新的能力。

(3) 情感目标:培养学生不畏困难,勇于钻研、探索、大胆创新的精神,在挫折中成长锻炼,培养学生良好的心理素质和抗挫折能力,通过抛物线焦点性质的探索及证明,使学生得到数学美和创造美的享受。

3 教学内容、重点、难点及关键 本节安排两节课,

第一节课:主要内容是利用《几何画板》探索抛物线的有关性质;

第二节课:证明第一节所得到的有关性质。

重点:

(1)如何利用《几何画板》探索、发现抛物线焦点的性质;

(2)如何证明这些性质。

难点;

(1)如何利用《几何画板》探索、发现抛物线焦点的性质;

(2)如何证明这些性质。

学生在网络教室(每人一机),其中装有《几何画板》软件及上课系统,每个学生的窗口,其他学生及教师都可以通过教师机切换,从而和其他学生交流,也可以通过网上论坛交流研究结果。

学生在网络教室(每人一机)中有几何画板软件,学生通过教师提供的网络,自已阅读,下载有关,利用《几何画板》的操作、试验、猜想,通过自已的研究获得结论,并互相讨论观察到的现象、交流研究结果。

4.1 使学生学会研究数学问题的基本过程,能够根据条件建立恰当的数学模型 问题1 回顾一下抛物线的定义,并根据抛物线的定义思考用《几何画板》如何作出焦点在x轴上的抛物线图象。 由于创设了一个创作的《几何画板》的窗口及网络窗口,学生通过网络学习,得到以上问题的多种作法,以下就其中的一种作法作为探索、研究抛物线焦点性质的基本图形。

高中数学说课稿的评价标准篇五

1、地位、作用和特点:

《》是高中数学课本第册(修)的第章“”的第节内容,高中数学课本说课稿。

特点之二是:。

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:a、b、c。

(2)能力目标:a、b、c。

(3)德育目标:a、b。

教学的重点和难点:

(1)教学重点:

(2)教学难点:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

导入新课新课教学。

反馈发展。

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的'教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出,并依。

据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。

演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

(一)、课题引入:

教师创设问题情景(创设情景:a、教师演示实验。b、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。c、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学说课稿的评价标准篇六

《数学课程标准》指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。

基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,体验数学的应用价值。

(一)教材的地位和作用。

有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的实用价值。

(二)教学目标。

1、联系生活情境了解扇形统计图的特点和作用。

2、能读懂扇形统计图,从中获取有效的信息。

3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。

(三)教学重点:

1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效信息。

2、认识折线统计图,了解折线统计图的特点。

(四)教学难点:

1、能从扇形统计图中获得有用信息,并做出合理推断。

2、能根据统计图和数据进行数据变化趋势的分析。

本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。

1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。

2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。

《数学课程标准》指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

本课分成创设情境,感知特点——分析数据,理解特征——尝试制图,看图分析——实践应用,全课总结四环节。

(一)复习引新。

1、复习旧知。

提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点?

2、引入新课。

(二)自主探索,学习新知。

新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。

三、课堂总结。

四、布置作业。

五、板书设计:

高中数学说课稿的评价标准篇七

二面角及其平面角的概念是立体几何最重要的概念之一。二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面垂直关系的一个汇集点。搞好本节课的学习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。教学大纲明确要求要让学生掌握二面角及其平面角的概念和运用。

2、教学目标。

根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标:

认知目标:

(1)使学生正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:以培养学生的创新能力和动手能力为重点。

(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

教育目标:

(1)使学生认识到数学知识来自实践,并服务于实践,从而增强学生应用数学的意识。

(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

3、本节课教学的重、难点是两个过程的教学:

(1)二面角的平面角概念的形成过程。

(2)寻找二面角的平面角的方法的发现过程。

其理由如下:

(1)现行教材省略了概念的形成过程和方法的发现过程,没有反映出科学认识产生的辩证过程,与学生的认知规律相悖,给学生的学习造成了很大的困难,非常不利于学生创新能力、独立思考能力以及动手能力的培养。

(2)现代认知学认为,揭示知识的形成过程,对学生学习新知识是十分必要的。同时通过展现知识的发生、发展过程,给学生思考、探索、发现和创新提供了最大的空间,可以使学生在整个教学过程中始终处于积极的`思维状态,进而培养他们独立思考和大胆求索的精神,这样才能全面落实本节课的教学目标。

在设计本教学时,主要贯彻了以下两个思想:

1、树立以学生发展为本的思想。通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探索和动手操作的机会,鼓励他们创新思考,亲身参与概念和方法的形成过程。2、坚持协同创新原则。把教材创新、教法创新以及学法创新有机地统一起来,因为只有教师创新地教,学生创新地学,才能营建一个有利于创新能力培养的良好环境。

首先是教材创新。

(1)在二面角的平面角概念引入上,我变课本上的“直接给出定义”为“类比——猜想——操作——定义”,也就是变封闭的、逻辑演绎体系为开放的、探索性的发现过程。

(2)在引入定义之后,例题讲解之前,引导学生发现寻找二面角的平面角的方法,为例题做好铺垫。

(3)重新编排例题。

其次是教法创新。采用多种创新的教学方法,包括问题解决法、类比发现法、研究发现法等教学方法。

这组教学方法的特点是教师通过创设问题情境,引导学生逐步发现知识的形成过程,使教学活动真正建立在学生自主活动和探索的基础上,着力培养学生的创新能力。

这组教学方法使得学生在解决问题的过程中学数学,用数学,不仅强调动脑思考,而且强调动手操作,亲身体验,注重多感官参与、多种心理能力的投入,通过学生全面、多样的主体实践活动,促进他们独立思考能力、动手能力等多方面素质的整体发展。

教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用《几何画板》制作课件来辅助教学;此外,为加强直观教学,教师可预先做好一些模型。

最后是学法创新。意在指导学生会创新地学。

1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

3、会学:通过自已亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新。

(一)、二面角。

1、揭示概念产生背景。

心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

问题情境1、我们是如何定量研究两平行平面的相对位置的?

问题情境3、我们应如何定量研究两个相交平面之间的相对位置呢?

通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为研究两相交平面的相对位置的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。

2、展现概念形成过程。

高中数学说课稿的评价标准篇八

1.教材所处的地位和作用:

本节内容在全书和章节中的作用是:《xx》是中数学教材第册第章第节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。

2.教育教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:

(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

3.重点,难点以及确定依据:

下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:

1.教学手段:

如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。

2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

3.学情分析:(说学法)。

(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

最后我来具体谈谈这一堂课的教学过程:

4.教学程序及设想:

(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。

(2)由实例得出本课新的知识点。

(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

(7)板书。

(8)布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。

(一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分。

集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。

第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。

第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。

第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。

高中数学说课稿的评价标准篇九

尊敬的各位考官:

大家好!

我是今天的x号考生,今天我说课的题目是《直线与平面平行的判定》。

高中数学课程以学生发展为本,提升数学学科核心素养。这节课我将秉承这一教学理念,从教材分析、教学目标、教学过程等几个方面来展开我的说课。

本节课选自人教a版高中数学必修2第二章第2节。此前学生对空间立体几何已经有了一定的感知。通过本节课的学习,能使学生进一步了解空间中直线与平面平行关系的判定方法,培养学生的逻辑思维和空间想象能力。

学生已经学习了空间中点、直线、平面间的位置关系,知道若直线与平面平行,则没有公共点,但直接利用定义无法进行判断。因而我会注意在教学时逐步引导学生,在辩证思考中探索直线与平面平行的条件。

根据以上对教材的分析和对学情的把握,我设置本节课的教学目标如下:

掌握直线与平面平行的判定定理,会用文字语言、符号语言和图形语言描述判定定理,并会进行简单应用。

通过直观感知、观察、操作确认的认知过程,培养空间想象力和逻辑思维能力,体会“降维”的思想。

通过生活中的实例,体会平行关系在生活中的广泛应用;在探究线面平行判定定理的过程中,形成学习数学的积极态度。

根据学生现有的知识储备和知识本身的难易程度,我设置本节课教学重点为:直线与平面平行的判定定理。教学难点为:直线与平面平行的判定定理的探究。

为达成教学目标,突破教学重难点,本节课我将采用讲授法、自主探究法、练习法等教学方法,以达到教与学的和谐完美统一。

下面我将重点谈谈我的教学过程。

导入环节我会带领学生从文字语言、图形语言和符号语言这三个角度复习直线与平面有哪些位置关系。接着我会请学生思考,该如何判定直线与平面平行。根据定义,只需判定直线与平面没有公共点即可。但直线无限伸长,平面无限延展,如何保证直线与平面无公共点。由此引发认知冲突,引入本节课的学习。

通过复习导入,不仅巩固了之前所学,建立起新旧知识之间的联系,而且能够有效激发起学生的学习兴趣,从而为下面的学习打好基础。

接下来是新知讲解环节。

我会请学生观察,教室门扇的两边是平行的,当门扇绕着一边转动时,观察门扇转动的一边和门框所在平面有怎样的位置关系。并组织学生动手操作,将书本平放在桌面上,翻动书的封面,封面边缘所在直线与桌面所在平面具有什么样的位置关系。

学生不难看出其中的平行关系。在此基础上,我会请学生同桌两人交流讨论,如果直线与平面平行,则这条直线与平面内多少条直线平行。如果这条直线平行于平面内的无数条直线,那么这条直线是否一定与这个平面平行。

除了知道知识,学生还要能对知识进行应用。我会出示以下练习题:求证空间四边形相邻两边中点的连线平行于另外两边所在的平面。结合这一练习题,我会进一步强调,线面平行问题可转化为线线平行问题。这也为之后线面、面面关系的学习奠定基础。

课堂小结部分,我会充分发挥学生的主体性,请学生说一说本节课的收获。收获不仅仅只是知识方面,也可以说一说这节课学到的思想方法等,进一步培养学生的综合素质。

课后作业我会请学生完成书上相应练习题,使学生在课后也能得到思考,夯实学生对于新知的掌握。

我的板书设计遵循简洁明了、突出重点的原则,以下是我的板书设计:

略。

高中数学说课稿的评价标准篇十

本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题。这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义。

会求闭区间上连续开区间上可导的函数的最值。

高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法。

本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点。

根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标:

(1)理解函数的最值与极值的区别和联系。

(2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值。

(3)掌握用导数法求上述函数的最大值与最小值的方法和步骤。

(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值。

(2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处。

(3)会求闭区间上连续,开区间内可导的函数的最大、最小值。

(1)认识事物之间的的区别和联系。

(2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题。

(3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神。

根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用。

本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输。为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学。

对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用。

本节课的教学,大致按照“创设情境,铺垫导入——合作学习,探索新知——指导应用,鼓励创新——归纳小结,反馈回授”四个环节进行组织。

高中数学说课稿的评价标准篇十一

1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。

教学重点:充分条件、必要条件和充要条件三个概念的定义。

2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。

教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解.对于“b=a”,称a是b的必要条件难于接受,a本是b推出的结论,怎么又变成条件了呢?对这学生难于理解。

教学关键:找出a、b,根据定义判断a=b与b=a是否成立。教学中,要强调先找出a、b,否则,学生可能会对必要条件难以理解。

(一)知识目标:

1、正确理解充分条件、必要条件、充要条件三个概念。

2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。

(二)能力目标:

1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。

2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。

(三)情感目标:

1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。

2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。

3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。

数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。

整个教学设计的主要特色:

(1)由生活事例引出课题;

(2)采用开放式教学模式;

(3)扩展例题是分析生活中的名言名句,又将数学融入生活中。

努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。

本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。

第一,创设情境,激发兴趣,引出课题:

考虑到高一学生学习这一章的知识储备不足,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。

我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的是为了第二部分引导学生得出充分条件的定义。这里要强调该事件包括:a:有3米布料;b:做一件衬衫够了。

第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:a:接氧气;b:活了。

用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。

第二,引导学生分析实例,给出定义。

在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。

得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作: 。

还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。这里,只要一下子“定义”清楚了,下边再解释“ ,a是b的必要条件”是怎么回事。这样处理,学生更容易接受“必要”二字。(因无a则无b,故欲有b,a是必要的)。

当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件b成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作: 。(不多不少,恰到好处)。使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。

高中数学说课稿的评价标准篇十二

根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标:

知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;

过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

根据上述教学目标,本节课的教学重点是函数单调性的概念形成和初步运用.虽然高一学生已经有一定的抽象思维能力,但函数单调性概念对他们来说还是比较抽象的。因此,本节课的学习难点是函数单调性的概念形成。

为了实现本节课的教学目标,在教法上我采取了。

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。

2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。

在学法上我重视了:

1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

函数单调性的概念产生和形成是本节课的难点,为了突破这一难点,在教学设计上采用了下列四个环节。

(一)创设情境,提出问题。

(问题情境)(播放中央电视台天气预报的音乐)。如图为某地区20xx年元旦这一天24小时内的气温变化图,观察这张气温变化图:

[教师活动]引导学生观察图象,提出问题:

问题1:说出气温在哪些时段内是逐步升高的或下降的?

问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?

[设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。这里,通过两个问题,引发学生的进一步学习的好奇心。

(二)探究发现建构概念。

[学生活动]对于问题1,学生容易给出答案。问题2对学生来说较为抽象,不易回答。

[教师活动]为了引导学生解决问题2,先让学生观察图象,通过具体情形,例如,“t1=8时,f(t1)=1,t2=10时,f(t2)=4”这一情形进行描述.引导学生回答:对于自变量810,对应的函数值有14。举几个例子表述一下。然后给出一个铺垫性的问题:结合图象,请你用自己的语言,描述“在区间[4,14]上,气温随时间增大而升高”这一特征。

在学生对于单调增函数的特征有一定直观认识时,进一步提出:

问题3:对于任意的t1、t2∈[4,16]时,当t1。

(t1)。

[学生活动]通过观察图象、进行实验(计算机)、正反对比,发现数量关系,由具体到抽象,由模糊到清晰逐步归纳、概括、抽象出单调增函数概念的本质属性,并尝试用符号语言进行初步的表述。

[教师活动]为了获得单调增函数概念,对于不同学生的表述进行分析、归类,引导学生得出关键词“区间内”、“任意”、“当时,都有”。告诉他们“把满足这些条件的函数称之为单调增函数”,之后由他们集体给出单调增函数概念的数学表述.提出:

问题4:类比单调增函数概念,你能给出单调减函数的概念吗?

最后完成单调性和单调区间概念的整体表述。

[设计意图]数学概念的形成来自解决实际问题和数学自身发展的需要。但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的`经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程。刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强。从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点。

(三)自我尝试运用概念。

1.为了理解函数单调性的概念,及时地进行运用是十分必要的。

[教师活动]问题5:(1)你能找出气温图中的单调区间吗?(2)你能说出你学过的函数的单调区间吗?请举例说明。

[学生活动]对于(1),学生容易看出:气温图中分别有两个单调减区间和一个单调增区间.对于(2),学生容易举出具体函数如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并画出函数的草图,根据函数的图象说出函数的单调区间。

[教师活动]利用实物投影仪,投影出学生画出的草图和标出的单调区间,并指出学生回答问题时可能出现的错误,如:在叙述函数的单调区间时写成并集。

[设计意图]在学生已有认知结构的基础上提出新问题,使学生明了,过去所研究的函数的相关特征,就是现在所学的函数的单调性,从而加深对函数单调性概念的理解。

[教师活动]问题6:证明在区间(0,+∞)上是单调减函数。

[学生活动]学生相互讨论,尝试自主进行函数单调性的证明,可能会出现不知如何比较f(x1)与f(x2)的大小、不会正确表述、变形不到位或根本不会变形等困难。

[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,投影学生的证明过程,纠正出现的错误,规范书写的格式。

[学生活动]学生自我归纳证明函数单调性的一般方法和操作流程:取值作差变形定号判断。

[设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究。

(四)回顾反思深化概念。

[教师活动]给出一组题:

2、若定义在r上的单调减函数f(x)满足f(1+a)。

[学生活动]学生互相讨论,探求问题的解答和问题的解决过程,并通过问题,归纳总结本节课的内容和方法。

[设计意图]通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对函数单调性认识的再次深化。

[教师活动]作业布置:

(1)阅读课本p34-35例2。

(2)书面作业:

必做:教材p431、7、11。

探究:函数y=x在定义域内是增函数,函数有两个单调减区间,由这两个基本函数构成的函数的单调性如何?请证明你得到的结论。

[设计意图]通过两方面的作业,使学生养成先看书,后做作业的习惯。基于函数单调性内容的特点及学生实际,对课后书面作业实施分层设置,安排基本练习题、巩固理解题和深化探究题三层。学生完成作业的形式为必做、选做和探究三种,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。

学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感。学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流,以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯。让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础。

高中数学说课稿的评价标准篇十三

尊敬的各位教师:

大家好,我是x场的x号考生。今日,我说课的资料是xxx。

对于本节课,我将从教什么、怎样教、为什么这么教来阐述本次说课。

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5.3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。

合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。

高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。

根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

(一)知识与技能。

会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。

(二)过程与方法。

经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。

(三)情感态度价值观。

经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点。

由正弦函数的图象得到正弦函数的性质。

正弦函数的周期性和单调性。

此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中异常重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。

在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的进取性、主动性。

(一)新课导入。

首先是导入环节,在这一环节中我将采用复习的导入方法。

我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。

这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。

(二)新知探索。

接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。

让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。

学生一边看投影,一边思考如下问题:

(1)正弦函数的定义域是什么。

(2)正弦函数的值域是什么。

(3)正弦函数的最值情景如何。

(4)正弦函数的周期。

(5)正弦函数的奇偶性。

(6)正弦函数的递增区间。

给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。

1.定义域:y=sinx定义域为r。

2.值域:引导学生回忆单位圆中的正弦函数线,发现值域为[-1,1]。

3.最值:根据值域的确定得到在何处取得最值以及函数的正负性。

4.周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。

5.奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。

6.单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。

在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。

(三)课堂练习。

第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。

经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的本事,趣味的知识在学生们的积极主动的探索中显得更有味道。

(四)小结作业。

最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括本事,让我在第一时间得到学习反馈,及时加以疏导。

在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。

经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。

我的板书设计遵循简介明了突出重点部分,以下是我的板书设计:

(略)。

高中数学说课稿的评价标准篇十四

导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

(2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探。

索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。

(3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。

(2)教学难点:椭圆标准方程的建立和推导。

1、动画演示,描绘出椭圆轨迹图形。

2、实验演示。

思考:椭圆是满足什么条件的点的轨迹呢?

1、动手实验:学生分组动手画出椭圆。

实验探究:

保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?

思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?

2、概括椭圆定义。

引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。

教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

思考:焦点为的椭圆上任一点m,有什么性质?

令椭圆上任一点m,则有。

1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

2、研讨探究。

问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点m,有。

尝试推导椭圆的方程。

思考:如何建立坐标系,使求出的方程更为简单?

将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。

方案一方案二。

按方案一建立坐标系,师生研讨探究得到椭圆标准方程。

=1(),其中b2=a2-c2(b0);

选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b0)。

教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。

1、观察椭圆图形及其标准方程,师生共同总结归纳。

(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;

(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;

(3)椭圆标准方程中三个参数a,b,c关系:;

(4)椭圆焦点的位置由标准方程中分母的大小确定;

(5)求椭圆标准方程时,可运用待定系数法求出a,b的值。

2、在归纳总结的基础上,填下表。

标准方程。

图形a,b,c关系焦点坐标焦点位置。

在x轴上。

在y轴上。

例1、求适合下列条件的椭圆的标准方程。

(1)两个焦点的坐标分别是,椭圆上一点p到两焦点距离和等于10。

(2)两焦点坐标分别是,并且椭圆经过点。

例2、(1)若椭圆标准方程为及焦点坐标。

(2)若椭圆经过两点求椭圆标准方程。

(3)若椭圆的一个焦点是,则k的值为。

(a)(b)8(c)(d)32。

例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点p向x轴作垂线段,求线段中点m的轨迹。

1、写出适合下列条件的椭圆标准方程。

(1),焦点在x轴上;

(2)焦点在x轴上,焦距等于4,并且经过点p;

2、若方程表示焦点在y轴上的椭圆,则k的范围。

3、已知b,c是两个定点,周长为16,求顶点a的轨迹方程。

4、已知椭圆的焦距相等,求实数m的值。

5、在椭圆上上求一点,使它与两个焦点连线互相垂直。

6、已知p是椭圆上一点,其中为其焦点且,求三解形面积。

师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。

课本第96页习题§8。1第3题、第5题、第6题。

课后思考题:

1、知是椭圆的两个焦点,ab是过的弦,则周长是。

(a)2a(b)4a(c)8a(d)2a2b。

2、的两个顶点a,b的坐标分别是边ac,bc所在直线的斜。

率之积等于,求顶点c的轨迹方程。

2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?

椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

将本文的word文档下载到电脑,方便收藏和打印。

高中数学说课稿的评价标准篇十五

1、地位、作用和特点:

《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。

本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。

教学目标:

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:a、b、c

(2)能力目标:a、b、c

(3)德育目标:a、b

教学的重点和难点:

(1)教学重点:

(2)教学难点:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

导入新课 新课教学

反馈发展

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出 ,并依

据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。

演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的'特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

(一)、课题引入:

教师创设问题情景(创设情景:a、教师演示实验。b、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。c、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学说课稿的评价标准篇十六

导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。

(2)过程与方法目标:通过对椭圆概念的引入教学,培养学生的观察能力和探

索能力;通过对椭圆标准方程的推导,使学生进一步掌握求曲线方程的一般方法,提高学生运用坐标法解决几何问题的能力,并渗透数形结合和等价转化的数学思想方法。

(3)情感、态度与价值观目标:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识,培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。

(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。

(2)教学难点:椭圆标准方程的建立和推导。

1、动画演示,描绘出椭圆轨迹图形。

2、实验演示。

思考:椭圆是满足什么条件的点的轨迹呢?

1、动手实验:学生分组动手画出椭圆。

实验探究:

保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?

思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?

2、概括椭圆定义

引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。

教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。

思考:焦点为的椭圆上任一点m,有什么性质?

令椭圆上任一点m,则有

1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么?

2、研讨探究

问题:如图已知焦点为的椭圆,且=2c,对椭圆上任一点m,有

,尝试推导椭圆的方程。

思考:如何建立坐标系,使求出的方程更为简单?

将各组学生的讨论方案归纳起来评议,选定以下两种方案,由各组学生自己完成设点、列式、化简。

方案一方案二

按方案一建立坐标系,师生研讨探究得到椭圆标准方程

=1(),其中b2=a2-c2(b0);

选定方案二建立坐标系,由学生完成方程化简过程,可得出=1,同样也有a2-c2=b2(b0)。

教师指出:我们所得的两个方程=1和=1()都是椭圆的标准方程。

1、观察椭圆图形及其标准方程,师生共同总结归纳

(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;

(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;

(3)椭圆标准方程中三个参数a,b,c关系:;

(4)椭圆焦点的位置由标准方程中分母的大小确定;

(5)求椭圆标准方程时,可运用待定系数法求出a,b的值。

2、在归纳总结的基础上,填下表

标准方程

图形a,b,c关系焦点坐标焦点位置

在x轴上

在y轴上

例1、求适合下列条件的椭圆的标准方程

(1)两个焦点的坐标分别是,椭圆上一点p到两焦点距离和等于10。

(2)两焦点坐标分别是,并且椭圆经过点。

例2、(1)若椭圆标准方程为及焦点坐标。

(2)若椭圆经过两点求椭圆标准方程。

(3)若椭圆的一个焦点是,则k的值为。

(a)(b)8(c)(d)32

例3、如图,已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点p向x轴作垂线段,求线段中点m的轨迹。

1、写出适合下列条件的椭圆标准方程

(1),焦点在x轴上;

(2)焦点在x轴上,焦距等于4,并且经过点p;

2、若方程表示焦点在y轴上的椭圆,则k的范围。

3、已知b,c是两个定点,周长为16,求顶点a的轨迹方程。

4、已知椭圆的焦距相等,求实数m的值。

5、在椭圆上上求一点,使它与两个焦点连线互相垂直。

6、已知p是椭圆上一点,其中为其焦点且,求三解形面积。

师生共同归纳本节所学内容、知识规律以及所学的数学思想和方法。

课本第96页习题§8。1第3题、第5题、第6题。

课后思考题:

1、知是椭圆的两个焦点,ab是过的弦,则周长是。

(a)2a(b)4a(c)8a(d)2a2b

2、的两个顶点a,b的坐标分别是边ac,bc所在直线的斜

率之积等于,求顶点c的轨迹方程。

2、与圆外切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线?

教学设计说明

椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例。本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探索精神和创新能力的教学思想贯穿于本节课教学设计的始终。

椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力。

椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生分组探究,师生共同研讨方程的化简和方程的特征,可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,并在这种师生尝试探究、合作讨论的活动中,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力。

设计例题、习题的研讨探究变式训练,是为了让学生能灵活地运用椭圆的知识解决问题,同时也是为了更好地调动、活跃学生的思维,发展学生数学思维能力,让学生在解决问题中发展学生的数学应用意识和创新能力,同时培养学生大胆实践、勇于探索的精神,开阔学生知识应用视野。

您可能关注的文档