- 时间:2023-11-13 07:13:33
- 小编:ZTFB
- 文件格式 DOC
是自我认知和自我管理的重要手段。写总结时要注意措辞得体,语言简练,避免太过啰嗦。以下是小编为大家整理的一些相关总结范文,希望能给大家带来帮助。
三角形的内角和教学设计篇一
1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。
2.让学生经历量一量、折一折、拼一拼等动手操作的过程。通过观察、 判断、 交流和推理探索用多种方法证明三角形的内角和是180 。
3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。
使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。
通过多种方法验证三角形的内角和是180 。
课件。四组教学用三角板。铅笔。大帆布兜子。固体胶。剪刀。筷子若干。
一、激趣导入,提炼学习方法
1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。激发学生的好奇心。然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”
2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。教师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。
4.导入新课。
图中有很多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜欢的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)
二、动手操作,探索交流新知
1.分组活动,探索新知
根据学生的选择把学生分成三组,分别采用量一量、折一折和拼一拼的方法探索新知。
量一量组同学发给以下几种学具:
折一折组同学发给上面的三角形一组。
拼一拼组同学发给上面的三角形一组、剪刀一把还有下面这样的白纸一张。
在学生探索的过程中教师要走近学生,与他们共同交流探讨,在学生有困难的时候要适当给予引导。
2.多方互动,交流新知
师:请我的大徒弟(量一量组)的同学先来汇报你们的研究成果。
(1)首先要求学生说一说你们小组是怎样进行探究的。
(2)说出你们组的探究结果怎样。(在此过程中教师不能急于纠正学生不正确的结论,因为这是知识的形成过程。)
(3)请学生说说通过探究活动你们组得出的结论是什么。
师:大徒弟就是大徒弟,汇报的真不错。二徒弟(折一折组)你们有没有更好的办法呢?
引导这一组从探究的过程和结论与同学、老师交流。
师:别看小徒弟(拼一拼组)这么小,方法可能是最好的。快来把你们的方法给大家汇报汇报。
同样引导这一组从探究的过程和结论与同学、老师交流。
3.思想碰撞,夯实新知
师:三个徒弟你们能说说谁的方法最好吗?
学生都会说自己的方法最好,再让其他同学发表自己的意见,此时生生之间,师生之间交流。(教师要引导学生说出量一量的方法可能由于量的不够准确,所以结果可能比180 大一些,或小一些。而其他两种方法没有改变角的大小,所以他们的是正确的。)
师:不论你量的怎样认真都会有不准确的地方,这就叫误差。而其他两组同学的方法更准确。三角形的内角和就是180 。(板书:三角形的内角和是180 )
四、走进生活,提升运用能力
1.出示课前那架柁标出它的顶角是120 ,求它的一个底角是多少度?
2.给你三根木条,能做出一个有两个直角的三角形吗?
五、总结
六、拓展新知,课外延伸
师:俗话说“活到老,学到老。”你们下山后还要继续探索,所以我要把我毕生都没有完成的任务交给你们去研究。
大屏幕出示:
能用你今天学过的知识和方法探索一下四边形的内角和是多少度吗?
三角形的内角和教学设计篇二
探索三角形内角和的度数以及已知两个角度数求第三个角度数。
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
教学难点:
教具学具准备:
教材与学生。
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)。
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
三。自主探索、研究问题、归纳总结:
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)。
(3)把你没有想到的方法动手做一次。
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示。
撕拼法1。教师取出三角形教具,把三个角撕下来,拼在一起,如图所示。
2.师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现。
四。巩固练习,知识升华。
1.完成课本第28页的“试一试”第三题。
2.想一想:钝角三角形最多有几个钝角?为什么?
3.有一个四边形,你能不用量角器而算出它的四个内角和吗?
试一试,看谁算得快。
师:谁来说说自己的计算过程?
[回答可能有二]:
(一种全部说是:)。
师:请问,你们是怎么想的,为什么这么认为?
生:……。
师:看来,大家是通过这两个三角形猜想的,是吗?想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)。
(一种有一部分同学说是,有一部分同学说不是:)。
师:看来,大家的意见不一致,想不想验证一下你们的猜想,(生:想)好,咱们一起走进三角形王国,一起去研究它们内角和的秘密吧!(师在课题“内角和”下面划上横线,打上问号)。
(二)动手操作,探究新知。
师:老师看你们有答案了,哪位同学愿意说一说你的奇思妙想?
生:我准备用量的方法。
师:然后呢?
生:然后把它们三个内角的度数相加起来,就知道了三角形的内角和是多少?
师:说的真不错,还有没有其它的方法?
生:我是把三角形的三个角剪下来,拼在一起(师鼓励:你的想法很有创意,等一会儿用你的行动来验证你的猜想吧!)。
生:……。
(如生一时想不到,师可引导:他是把三个内角的度数相加在一起,我们能不能想办法把三个内角放在一起进行观察,看看能不能发现些什么呢?)。
师:好啦,老师相信咱们班的同学个个都是小数学家,一定能找出更多的方法的,请你们在研究之前,也像老师一样,在三个内角上编上序号,角一、角二、角三,现在就请同学们对锐角三角形、直角三角形和钝角三角形等各种类型的三角形进行研究,看看它们的内角和各有什么特点。咱们比一比,看一看,哪个小组的方法多,方法好!
开始吧!(学生研究,师巡回指导)预设时间:5分钟。
师:老师看各小组已经研究好了,哪位同学愿意上来交流一下?
师:请你告诉大家,你是怎么研究的,最后发现了什么结果?
(预设:如果第一类同学说的是量的方法)。
师:你是用什么来研究的?
生:量角器。
师:那请你说一下你度量的结果好吗?
(生汇报度量结果)。
生:180度。
师:那到底三角形的内角和是不是180度呢?还有哪位同学有其它的方法进行验证吗?
生:我是先把三角形的三个角剪掉以后粘在一起,然后在量出它们三个角组成的度数。
师:他演示的真好,你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击flash:把三角形按照三个内角撕成三块,先把角一放在右边,再把角二放在左边,最后把角三调个头,插在角一角二的中间,这样它们三个内角就形成了一个大角,角一的这条边,角二这条边看起来在一条直线上,那到底是不是在一条直线上呢,我们一起用直尺来量一下,师演示后问学生:是不是在一条直线上,那这个大角是个什么角呢?通过刚才拼的过程,你有什么发现?)。
生:我们还用了折的方法(生介绍方法)。
师:你们听明白了吗?李老师把他的过程给大家在大屏幕上演示一下。
(师边讲解边点击flash:先找到两条边的中点,把它连起来,把角一沿着中间的这条线向对边对折,再把角二向里对折,使它的顶点与角一对齐,最后把角三也用同样的方法对折,这样它们三个内角就形成了一个大角,这个大角是个什么角呢?)。
生:是个平角。180度。
师:请这位同学来说给大家听听吧!
生:我把两个相同的直角三角形拼成了一个长方形,因为长方形里面有四个直角,所以它的内角和是360度,那么一个三角形的内角和就是180度。
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差,如果测量仪器再精密一些,我们的方法再准确一些,那么任意一个三角形的内角和也将是180度。
师:把你们伟大的发现读一读吧!
(三)拓展应用,深化认识。
师:请看老师手上的这两个三角形,左边这个内角和是多少度?(生:180度)右边呢(生:也是180度)。
师:现在老师把它们拼在一起,这个大三角形的内角和又是多少度呢?
(生答后师引导归纳得出:三角形的内角和与形状大小无关,组成的大三角形的内角和依然是180度。)。
师:刚才我们在讨论学习三角形知识的时候,三角形中的两个好朋友却争执了起来,想知道怎么回事吗?让我们一起去看看吧!(出示课件,课件内容:一个大一些的直角三角形说:“我的个头比你大,我的内角和一定比你大”。另一个稍小的锐角三角形说:“是这样吗”?)。
师:到底谁说的对呢?今天我们就用我们今天学到的知识来为它们解决解决吧!
师:好,请看大屏幕!
(出示基础练习)在一个三角形中角一是140度,角三是25度,求角二的度数。
生答后,师提问:你是怎样想的?
生陈述后,师鼓励:说的真好!
出示自行车、等边三角形的路标牌、告诉顶角求底角的房顶、直角三角形的电线杆架进行练习。
师:同学们,今天我们一起学习了三角形的内角和,你有哪些收获呢?
师:嗯,真不错,你们知道吗?三角形的内角和等于180度是法国著名的数学家帕斯卡在1635年他12岁时独自发现的,今天凭着同学们的聪明智慧也研究出了三角形的内角和是180度,老师为你们感到骄傲,老师相信在你们的勤奋学习和刻苦钻研下,你们就是下一个“帕斯卡”!
师:好,下课!同学们再见!
三角形的内角和教学设计篇三
1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。
2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。
3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。
探索发现三角形内角和等于180并能应用。
三角形内角和是180的探索和验证。
师:大家喜欢猜谜语吗?
生:喜欢。
师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。
(打一几何图形))
生:三角形。
师:三角形中都有哪些学问?
生:三角形有三条边,三个角,具有稳定性。
生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。
生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。
生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。
生:三角形的内有和是180。
生:(一脸疑惑)
师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?
生:每个三角形的内角和都是180吗?
(根据学生的问题,在三角形的内角和是180后面加上一个?)
1、理解内角 师:什么是内角?
生:我认为三角形的内角就是指三角形的三个角。
师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。
2、理解内角和。
师:那三角形的内角和又是指什么?
生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。
师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。
3、实践验证
师:每个三角形的内角和都是180吗?用什么方法来验证呢?
生:量一量每个角的度数,然后加起来看看是不是180。
师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)
师:谁愿意把你的劳动成果和大家分享一下?
生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。
师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。
生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。
师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。
生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。
师:你发现了什么?
生:有的三角形的内角和是180,而有的三角形的内角和却不是180。
师:看来三角形的内角和不一定是180。
生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。
生:都接近180就能说一定是180吗?
师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!
(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)
师:请每个小组选择一个代言人,和大家分享一下你们的智慧。
生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。
生:我们小组也有折的直角三角形,钝角三角形。
(其它的成员展示不同的三角形)
师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!
师:哪个小组和他们的方法不一样?
生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。
师:这个小组的方法简便,易操作,很好。
生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!
4、小结
生:没有。
师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。
1、说一说每个三角形的内角和是多少度
师:(出示一个大三角形)这个大三角形的内角和是多少度?
生: 180
师:(出示一个小三角形)这个小三角形的内角和是多少度?
生:180
师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?
生:180
生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180
师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?
生:180
2、求下面各角的度数
师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?
(出)
3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?
师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。
生:用量角器量一量
师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?
师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。
四、回顾总结,拓展延伸
师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?
生:我知道了三角形的内角和是180。
生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。
生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。
生:我可以用撕、拼、折等方法来验证三角形的内角和是180。
师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。
师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?
生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。
生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。
师:我们学习知识,必须知其然并知其所以然。
师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。
三角形的内角和教学设计篇四
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
3、培养学生动手动脑及分析推理能力。
重点难点:
教学准备:
导学过程。
一、复习。
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)。
二、新知。
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)。
1、读学卡的学习目标、任务目标,做到心里有数。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)。
(4)汇报结论(清楚明白的给小组加优秀10分)。
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)。
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)。
三、知识运用(课件出示练习题,生解答)。
1、填空。
(2)一个直角三角形的一个锐角是50,则另一个锐角是()。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。
(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。
2、判断。
(1)一个三角形中最多有两个直角。()。
(3)有一个角是60的等腰三角形不一定是等边三角形。()。
(5)直角三角形中的两个锐角的和等于90。()。
四、拓展探究。
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
三角形的内角和教学设计篇五
遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。
最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让学生在游戏中消除疲倦激发兴趣,拓展学生思维。兼顾到智力水平发展较快的同学。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
三角形的内角和是三角形的一个重要特征。本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。
因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
多媒体课件、学具。
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?
生1:三角形是由三条线段围成的图形。
生2:三角形有三个角,……。
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)。
(二)设疑,激发学生探究新知的心理。
师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)。
生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)。
师:有谁画出来啦?
生1:不能画。
生2:只能画两个直角。
生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
生:想。
师:那就让我们一起来研究吧!
(揭示矛盾,巧妙引入新知的探究)。
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)。
生:90°、60°、30°。(课件演示:由三角板抽象出三角形)。
师:也就是这个三角形各角的度数。它们的和怎样?
生:是180°。
师:你是怎样知道的?
生:90°+60°+30°=180°。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么?
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
1、猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
生1:180°。
生2:不一定。
……。
(1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!
师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)。
(2)小组汇报结果。
师:请各小组汇报探究结果。
生1:180°。
生2:175°。
生3:182°。
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢?
生:把它们剪下来放在一起。
1、用拼合的方法验证。
师:很好,请用不同的三角形来验证。
师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。
2、汇报验证结果。
师:先验证锐角三角形,我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
3、课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)。
师:我们可以得出一个怎样的结论?
师:为什么用测量计算的方法不能得到统一的结果呢?
生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差。
三角形的内角和教学设计篇六
《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握三角形的内角和是180度这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了试一试,练一练的内容。已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】。
经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。
【学习目标】。
能力目标:培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。
情感目标:让学生体会几何图形内在的结构美。
【教学过程】。
一、情景激趣,质疑猜想。
播放动画片:在图形王国中,有一天三角形大家庭里为三角形内角和的大小爆发了一场激烈的'争吵。
钝角三角形大声叫着:我的钝角大,我的内角和一定比你们的内角和大。锐角三角形也不示弱:我的锐角虽然比钝角小,但我的内角和并不比你小。直角三角形说:别争了,三角形的内角和都是180。我们的内角和是一样大的。
师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?
学生进行猜想,自由发言。
(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)。
二、自主探究,验证猜想。
生1:能。我量出三角形的三个内角和度数,加起来是否接近180(量的时候可能会有些误差)。
生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。
生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。
师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上1、2、3,以免在剪拼时把内角搞混了。)。
学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。
(设计意图:验证猜想为学生提供了做数学的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)。
三、交流评价,归纳结论。
学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。
实验报告单。
实验名称。
实验目的。
实验材料。
尺子。
剪刀。
量角器。
我的方法。
我的发现。
我的表现。
自评。
互评。
学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。
师生共同归纳,得出结论:
三角形的内角和教学设计篇七
1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。
2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。
3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。
重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。
《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。
一、创设情境,激发兴趣。
出示课件,提出两个两个疑问:
1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?
二、初建模型,实际验证自己的猜想。
在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。
内角和。
锐角三角形。
钝角三角形。
直角三角形。
等腰三角形。
等边三角形。
三、再建模型,彻底的得出正确的结论。
因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。
四、应用新知,巩固练习。
1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)。
2、试一试,在直角三角形中已知其中的一个角求另一个角的度数。
3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。
五、拓展与延伸。
三角形的内角和教学设计篇八
本节课的教学先通过计算三角尺的3个内角的度数的和,激发学生的好奇心,进而引发“三角形内角和是180度”的猜想,再通过组织操作活动验证猜想,得出结论。
1、让学生通过观察、操作、比较、归纳,发现“三角形的内角和是180o”。
2、让学生学会根据“三角形的内角和是180o”这一知识求三角形中一个未知角的度数。
3、激发学生主动参与、自主探索的意识,锻炼动手能力,发展空间观念。
教学准备:三角板,量角器、点子图、自制的三种三角形纸片等。
一、提出猜想:
看了这2个算式你有什么猜想?
二、验证猜想:
1、画、量:在点子图上,分别画锐角三角形、直角三角形、钝角三角形。画好后分别量出各个角的度数,再把三个角的度数相加。
老师注意巡视和指导。交流各自加得的结果,说说你的发现。
2、折、拼:学生用自己事先剪好的图形,折一折。
指名介绍折的方法:比如折的是一个锐角三角形,可以先把它上面的一个角折下,顶点和下面的边重合,再分别把左边、右边的角往里折,三个角的顶点要重合。发现:三个角会正好在一直线上,说明它们合起来是一个平角,也就是180度。
继续用该方法折钝角三角形,得到同样的结果。
通过交流使学生明白:除了用刚才的方法之外,直角三角形还可以用更简便的方法折;可以直角不动,而把两个锐角折下,正好能拼成一个直角;两个直角的度数和也是180度。
3、撕、拼:可能有个别学生对折的方法感到有困难。那么还可以用撕的方法。
在撕之前要分别在三个角上标好角1、角2和角3。然后撕下三个角,把三个角的一条边、顶点重合,也能清楚地看到三个角合起来就是一个平角——180度。
小结:我们可以用多种方法,得到同样的结果:三角形的内角和是180o。
4、试一试:
三角形中,角1=75o,角2=39o,角3=()o。
算一算,量一量,结果相同吗?
三、完成想想做做:
1、算出下面每个三角形中未知角的度数。
在交流的时候可以分别学生说说怎么算才更方便。比如第1题,可先算40加60等于100,再用180减100等于80o。第2题则先算180减110等于70,再用70减55更方便。第3题是直角三角形,可不用180去减,而用90减55更好。
指出:在计算的时候,我们可根据具体的数据选择更佳的算法。
然后再分别算一算图上的这三个三角形的内角和。得出结论:三角形不论大小,它的内角和都是180o。
3、用一张正方形纸折一折,填一填。
4、说理:一个直角三角形中最多有几个直角?为什么?
一个钝角三角形中最多有几个直角?为什么?
1、(第2题)你能连一连吗?
学生独立做,做完后把有疑问的几个选出来交流。
2、在钉子板上分别围出锐角三角形、直角三角形和钝角三角形。
学生围好后,互相检查验证。
3、用一张长方形纸,折出两个完全一样的直角三角形。
用一张正方形纸,折出四个完全一样的直角三角形。
让学生动手折一折,在交流的时候用“对角线“来说一说。
5、你能在下面的三角形中分别画一条线段,把它分成两个直角三角形吗?
通过交流使学生明白:画出的线段就是原来三角形的高。
三角形的内角和教学设计篇九
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
3、培养学生动手动脑及分析推理能力。
一、复习。
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)。
二、新知。
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)。
1、读学卡的学习目标、任务目标,做到心里有数。
4、验证:
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)。
(4)汇报结论(清楚明白的给小组加优秀10分)。
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)。
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)。
三、知识运用(课件出示练习题,生解答)。
1、填空。
(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、
(2)一个直角三角形的一个锐角是50,则另一个锐角是()。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。
(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。
2、判断。
(1)一个三角形中最多有两个直角。()。
(3)有一个角是60的等腰三角形不一定是等边三角形。()。
(4)三角形任意两个内角的和都大于第三个内角。()。
(5)直角三角形中的两个锐角的和等于90。()。
四、拓展探究。
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。
2、汇报结果。
3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形的内角和教学设计篇十
本节微课视频是苏教版数学教科书四年级下册第78~79页的教学内容。在教学之前,学生已经掌握了角的概念、角的分类和角的测量;认识了三角形,知道三角形是由三条线段首尾相接围成的图形,有三个顶点、三条边和三个角。这些已经构成学生进一步学习的认知基础。《三角形的内角和》是三角形的一个重要性质。学生在学习四年级上册“角的度量”时,通过测量三角尺三个角的度数,知道三角尺三个角加起来的和是180度,再加上课前的预习,大部分的学生已经能得出结论:三角形的内角和是180度,只不过他们不清楚其中的道理,只是机械性的记忆。因此,本节课的重点不是结论,而是验证结论的过程。教材组织学生对不同形状、不同大小的三角形的内角和进行探索,通过转化、推理、比较、操作和验证,总结概括出“所有三角形的内角和都是180度”的规律,从而进一步发展学生的空间观念,提高学生的自主学习能力和推理能力。
一、教学目标。
1、通过测量、转化、观察和比较等活动探索发现并验证“三角形的内角和是180度”的规律,并且能利用这一结论解决求三角形中未知角的度数等实际问题。
2、通过折一折、拼一拼和剪一剪等一系列的操作活动培养学生的'联想意识和动手操作能力。体验验证结论的过程与方法,提高学生分析和解决问题的能力。
3、使学生通过操作的过程获得发现规律的喜悦,获得成就感,从而激发学生积极主动学习数学的兴趣。
二、教学重点和难点。
难点:对不同验证方法的理解和掌握。
三、教学过程。
(一)质疑――发现问题,提出问题。
交流:不同三角尺的内角和都是一样的吗?三角尺的内角和有什么特征?
提问:三角尺的形状是什么三角形?三角尺的内角和是180度,我们还可以说成是什么?(得出结论:直角三角形的内角和是180度。)。
你有什么办法验证这一结论呢?(动手操作,寻找答案)。
方法一:拿出不同的直角三角形,分别测量三个内角的度数,再求和。(提示存在误差,但三个内角的和都在180度左右)。
方法二:用两个相同的直角三角形拼成一个长方形,由于长方形的四个内角和是360度,因此能得出一个直角三角形的三个内角和是180度。
(二)探究――分析问题,解决问题。
出示三个三角形:直角三角形、锐角三角形和钝角三角形。
引导:直角三角形的内角和是180度了,由此我们联想到锐角三角形和钝角三角形的内角和也有可能是180度。
提问:你有什么办法来验证这一猜想呢?
拿出事先从课本第113页剪下来的3个三角形,动手操作,自主探索,发现规律。
方法一:可以像上面那样先测量每个三角形的三个内角的度数,再计算出它们的和,看看能发现什么规律。学生测量计算,教师巡视指导。
引导:测量时要尽量做到准确,测量是存在误差的,对于测量的不准的同学要重新测定和确认,计算出它们的和,发现其中的规律。
方法二:既然是求三角形的内角和,我们就可以想办法把三角形的3个内角拼在一起,看看拼成了什么角。那怎样才能把3个内角拼在一起呢?我们可以将三角形中的3个内角撕下来,再拼在一起,会发现拼成了一个平角,是180度。
方法三:把三角形的三个内角撕下来,虽然能将他们拼在一起,但是原有的三角形被破坏了。因此,我们还可以通过折一折的方法,把三个内角折过来拼在一起,同样会发现拼成一个平角,是180度。
方法四:将锐角三角形和钝角三角形分别分成两个直角三角形,利用直角三角形内角和是180度进行推理。180+180=360度,360-90-90=180度。
(三)归纳――获得结论。
交流:回顾以上3个三角形的内角和的探索过程,你发现了什么规律?
总结:通过测量计算、拼一拼和折一折的方法,我们可以消除心中的问号,肯定得说出所有三角形的内角和都是180度这一结论。
(四)拓展――巩固练习。
1、将一个大三角形剪成两个小三角形,每个小三角形的内角和是多少度?
2、在一个三角形中,根据两个内角的度数,求第三个内角的度数?
您可能关注的文档
- 最新道德与法治小论文(优质15篇)
- 员工奖励方案明细汇总(精选10篇)
- 军人转业的申请书范文(大全10篇)
- 社区低保工作总结简单汇报 社区低保工作总结(通用15篇)
- 大班绘本教案(优秀10篇)
- 祝寿词范文如何写 如何写祝寿贺词(4篇)
- 2023年舞蹈社团计划方案(汇总20篇)
- 名誉会长聘书范文通用(汇总12篇)
- 格林童话的读书笔记范文(模板8篇)
- 家委会竞选发言稿通用(优秀11篇)
- 学生会秘书处的职责和工作总结(专业17篇)
- 教育工作者分享故事的感悟(热门18篇)
- 学生在大学学生会秘书处的工作总结大全(15篇)
- 行政助理的自我介绍(专业19篇)
- 职业顾问的职业发展心得(精选19篇)
- 法治兴则民族兴的实用心得体会(通用15篇)
- 教师在社区团委的工作总结(模板19篇)
- 教育工作者的社区团委工作总结(优质22篇)
- 体育教练军训心得体会(优秀19篇)
- 学生军训心得体会范文(21篇)
- 青年军训第二天心得(实用18篇)
- 警察慰问春节虎年家属的慰问信(优秀18篇)
- 家属慰问春节虎年的慰问信(实用20篇)
- 公务员慰问春节虎年家属的慰问信(优质21篇)
- 植物生物学课程心得体会(专业20篇)
- 政府官员参与新冠肺炎疫情防控工作方案的重要性(汇总23篇)
- 大学生创业计划竞赛范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 编辑教学秘书的工作总结(汇总17篇)
- 学校行政人员行政工作职责大全(18篇)