手机阅读

高等代数高志让心得体会及收获 对高等代数课程的心得体会(9篇)

格式:DOC 上传日期:2023-01-10 04:53:25 页码:9
高等代数高志让心得体会及收获 对高等代数课程的心得体会(9篇)
2023-01-10 04:53:25    小编:ZTFB

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。那么心得体会怎么写才恰当呢?以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。

有关高等代数高志让心得体会及收获一

1.试题特点

(1)注重基础知识、基本技能的考查,符合高考命题的意图和宗旨。

让不同的考生掌握不同层次的数学,让几乎所有的考生都能感受到成功的喜悦。本次高二试卷特注重基础知识的考查,22道题中有5道题(占31分)得分率在90%以上,有6题(占36分)得分率在80%--90%之间,有4题(占25分)得分率在70%--80%之间。这样让所有同学对数学学习有了更强的信心。

(2)注重能力考查

初等数学的基础知识是学生进入高等学校继续学习的基础,也是参加社会实践的必备知识.考查学生基础知识的掌握程度,是高考的重要目标之一.要善于知识之间的联系,善于综合应用,支离破碎的知识是不能形成能力的.考查时,既要注重综合性,又兼顾到全面,更注意突出重点.整个试卷前21题的计算量不大,体现多考一点“想”,少考一点“算”,不追求大的运算量,注重考查数学思想和基本方法以及灵活地解决问题能力,但第22题的计算过繁,使绝大多数的学生在此处失掉过多的分,没有针对性地考察解析几何中的运算能力。

(3)注重数学应用,力求展现创新空间

解答数学应用题,是分析问题和解决问题能力的重要表现,能反映出学生的创新意识和实践能力.第21题联系了生产方面的实际问题,试题的表述基本符合学生实际情况,考查了学生的应用能力,并有一定的灵活性,也考查了学生的解决实际问题的能力。

2.考试结果

经抽样(抽样270份)统计分析,总体情况大致是:均分:108。7分;优秀人数51,优秀率18。9%;及格人数223,及格率82。6%。各题分析如下:

题号1-1213-16171819202122平均分47。511。510。99。110。38。37。54。5得分率0。790。720。900。760。860。690。620。32题号123456789101112均分4。854。943。762。914。244。562。444。224。01。813。913。81难度0。970。990。750。580。850。910。890。840。80。360。780。76题号13141516均分3。213。612。672。0难度0。80。90。670。5

3.试题及学生错误分析

第4题,很多同学选d,原因主要是审题不清,误认为p点是圆上一点。

第10题,主要错误原因在于对a,b认识不清,若a,b以具体数字出现,学生就会理解渐近线确定,双曲线方程不唯一,由于题中以字母出现,学生误以为答案c就代表共渐近线的双曲线。

第13题,主要错误在于(1)审题不清;(2)到角公式用错;

第15题,主要错误在于基本知识点掌握不牢固,二元一次不等式表示平面区域,而直线将平面分成了三部分;

第16题,主要错误在于学生对圆的性质掌握得不是很好,圆与双曲线知识综合运用能力较差;

第17题,主要错误在于少数同学运算不当及基本技能不是很强;

第18题,主要错误在于(1)没有能够熟练运用圆的性质来解决圆的相关问题;(2)有很多同学丢开了圆的特殊性质,而用直线与二次曲线相交的一般方法来解决问题时,弦长公式又记错;

第19题,主要错误在于部分同学书写错误,证明不合乎逻辑,把要证的结论又当条件用;

第20题,主要错误在于(1)少数同学对直接法求轨迹方程掌握得不是很好;(2)不少同学直接当作椭圆的标准方程来处理;(3)学生的运算能力不是太强,弦长公式记错;(4)对直线与圆锥曲线问题的处理方法掌握的也不是很好;

第21题,主要错误在于(1)实际问题的自然约束条件“”错误或漏写;(2)不能很正确、规范地作出可行域;(3)求目标函数的最值过程中,表述不规范或没有表述,(4)解完应用题后没有作答;

第22题,主要错误在于第2小题的运算繁,学生畏难情绪重,怕算;学生没有掌握好基本方法。

3.思考与建议

从本次考试可以看出,整体质量是还不容乐观.低分率也不小,一些稳得分的题目还是有很多学生错,这反映了学生的基础不够扎实,数学能力是不强的,有一些知识还没有真正掌握.平时教学建议如下:

(1)平时教学应注重基础,让所有学生掌握最基本的数学知识和基本技能。如:基本概念、公式、定理、定义的教学就应注重基础,让学生真正理解、掌握、记忆到位。

(2)平时讲解数学例题时有意识地透数学思想方法,让学生逐渐养成数学地思考数学问题的习惯。

(3)要注重培养学生良好的学习习惯、思维习惯和作业习惯,强化解题规范的要求。

(4)要着重培养学生熟练、准确的运算能力,解析几何问题的运算较繁,应提倡学生寻找最简的处理方法,更要让学生多体会运算当中的技巧。

(5)应注重培养学生解决实际问题的能力,让学生体验数学的巨大作用,激发学生学习数学的热情。

(6)要注重培养学生独立思考问题、解决问题的能力能力;让学生会思考、会解题、会质疑、会反思、会归纳,从而提高学生分析问题和解决问题的能力,提升学生的数学素养,大面积提高教学质量。

有关高等代数高志让心得体会及收获二

本年级有16个班,其中理化4个、物生6、政史2个、史地4个

各个科目组学生基础不平衡,给教学带来难度。本备课组中青教师比较多。工作经验丰富,干劲足。

以扎实推进素质教育为目标,加强理论学习、转变思想观念、深化教研教改工作,围绕提高课堂教学效益、规范教学常规管理、促进备课组成员专业发展这三个中心工作展开。

本学期教务处继续抓好教学管理,规范教学过程,加强教学指导,加大考核力度。群策群力、千方百计提高教学质量。

1、重视理论学习:

组织备课组成员认真学习教育教学理论,本学期备课组仍然每周活动一次,每次活动有学习专题、活动主题,进行评课、议课,通过各种评议课、展示课活动,使教学水平再上新台阶。

2、狠抓教学常规:

规范教学行为,进一步明确并落实教学常规各环节(备课、授课、课后反思、作业批改、补差与提高等)的要求,坚持“教师为主导,学生为主体,训练为主线,思维为核心,能力为目标”的教学原则,以学生发展为本,积极、主动地推行课堂教学改革,提高课堂教学的有效性。

3、构建高效课堂:

课堂教学是教学工作的核心内容,是提高教学质量的主阵地,我们将努力营造人人关心课堂教学、人人研究课堂教学的氛围。

4、强化集体备课:

加强备课组建设,抓实备课组活动。积极推行“集体备课,资源共享,个人加减,课后反思”的集体备课制度。开展备课组观摩和交流活动,抓实组内推门听课活动,对推门听课提出更加明确更加具体的要求。备课组每周集中备课一次,组员不得无故缺席,全体教师以发扬集体主义精神、团结协作精神为已任,贡献个人智慧、寻求共同发展,

5、严格检测工作:单元(或章节)结束后要进行过关检测,及时了解和评估阶段教学效果,以便改进措施和提高效率。

1、学生情况分析

高二是高中的关键,在整个高中阶段有承上启下的作用,经过高一年的学习,学生无论是从知识上还是从思维习惯上都有了很大的提高,已经完全适应了高中生活。

2、教学目标

高二要乘胜追击,利用高一学过的知识和学习方法,充分发挥学生的主体作用,使高二学生把所学知识学好。

3、基本措施

(1)理论学习:

抓好教育理论特别是最新的教育理论的学习,及时了解课改信息和课改动向,转变教学观念,形成新课标教学思想,树立现代化、科学化的教育思想。

(2)做好各时期的计划:

为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及数学教学任务和内容,做好学期教学工作的总体计划和安排,并且对各单元的进度情况进行详细计划。

(3)备好每堂课:

认真钻研课标和教材,做好备课工作,对教学情况和各单元知识点做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证。

(4)做好课堂教学:

创设教学情境,激发学习兴趣。

(5)认真批改作业:

精批细改每一位学生的每份作业,学生的作业缺陷,做到心中有数。对每位学生的作业订正和掌握情况都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。

(6)做好课外辅导:

全面关心学生,这是老师的神圣职责,在课后能对学生进行针对性的辅导,解答学生在理解教材与具体解题中的困难,使优生尽可能“吃饱”,获得进一步提高;使差生也能及时扫除学习障碍,增强学生信心,尽可能“吃得了”。

有关高等代数高志让心得体会及收获三

一、指导思想

高三数学教学要以《全日制普通高级中学教科书》、20__年普通高等学校招生全国统一考试《北京卷考试说明》为依据,以学生的发展为本,全面复习并落实基础知识、基本技能、基本数学思想和方法,为学生进一步学习打下坚实的基础。要坚持以人为本,强化质量的意识,务实规范求创新,科学合作求发展。

二、教学建议

1、认真学习《考试说明》,研究高考试题,把握高考新动向,有的放矢,提高复习课的效率。

《考试说明》是命题的依据,备考的依据。高考试题是《考试说明》的具体体现。因此要认真研究近年来的考试试题,从而加深对《考试说明》的理解,及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。

注意08年高考的导向:注重能力考查,反对题海战术。《考试说明》中对分析问题和解决问题的能力要求是:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新颖的信息、情境和设问进行独立的思考与探究,使问题得到解决。08年的高考试题无论是小题还是大题,都从不同的角度,不同的层次体现出这种能力的要求和对教学的导向。这就要求我们在日常教学的每一个环节都要有目的地关注学生能力培养,真正提高学生的数学素养。

2、充分调动学生学习积极性,增强学生学习的自信心。

尊重学生的身心发展规律,做好高三复习的动员工作,调动学生学习积极性,因材施教,帮助学生树立学习的自信性。

3、注重学法指导,提高学生学习效率。

教师要针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率。如:要求学生建立错题本,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。

4、高度重视基础知识、基本技能和基本方法的复习。

要重视基础知识、基本技能和基本方法的落实,守住底线,这是复习的基本要求。为此教师要了解学生,准确定位。精选、精编例题、习题,强调基础性、典型性,注意参考教材内容和考试说明的范围和要求,做到不偏、不漏、不怪,进行有针对性的训练。

5、教学中要重视思维过程的展现,注重学生能力的发展。

在教学中我们发现学生不太喜欢分析问题,被动的等待老师的答案的现象很普遍,因此,教学中教师要深入研究,挖掘知识背后的智力因素,创设环境,给学生思考、交流的机会,充分发挥学生的主体作用,使学生在比较、辨析、质疑的过程中认识知识的内在联系,形成分析问题、解决问题的能力。养成他们动口、动脑、动手的'习惯。

6、高中的重点知识在复习中要保持较大的比重和必要的深度。

近年来数学试题的突出特点:坚持重点内容重点考查,使高考保持一定的稳定性;在知识网络交汇点处命制试题。因此在函数、不等式、数列、立体几何、三角函数、解析几何、概率等重点内容的复习中,要注意轻重缓急,注重学科的内在联系和知识的综合。

7、 重视通性、通法的总结和落实。

教师要帮助学生梳理各部分知识中的通性、通法,把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上。通过题目说通法,而不是死记硬背。进而使学生形成一些最基本的数学意识,掌握一些最基本的数学方法,不断地提高解决问题的能力。

8、 渗透数学思想方法, 培养数学学科能力。

《考试说明》明确指出要考查数学思想方法, 要加强学科能力的考查。 我们在复习中要加强数学思想方法的复习,如转化与化归的思想、函数与方程的思想、分类与整合的思想、数形结合的思想、特殊与一般的思想、或然与必然的思想等。以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实。切忌空谈思想方法,要以知识为载体,润物细无声。

9、建议在每块知识复习前作一次摸底测试,(师、生)做到心中有数。坚持备课组集体备课,把握轻重缓急,避免重复劳动,切忌与学生实际不相符。

总之,我们要加强学习、研究,注重对学生、教材、教法和高考的研究,总结经验和吸取教训,搞好第一轮复习,为第二轮复习打好基础。

三、教学进度安排

9月底前完成高三选修课内容。期中考试的范围除选修课内容外,还要涉及到排列组合、二项式定理、概率、简易逻辑、函数、不等式、数列等内容。

期中考试之后复习:向量、三角、立体几何、 解析几何等内容。

第一轮的复习要以基础知识、基本技能、基本方法为主,为高三数学会考做好准备,不要赶进度,重落实。

有关高等代数高志让心得体会及收获四

ⅰ.教学内容解析

本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.

这是指数函数在本章的位置.

指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.

指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.

ⅱ.教学目标设置

1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.

2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.

3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.

4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.

ⅲ.学生学情分析

授课班级学生为南京师大附中实验班学生.

1.学生已有认知基础

学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.

2.达成目标所需要的认知基础

学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.

3.难点及突破策略

难点:1. 对研究函数的一般方法的认识.

2. 自主选择底数不当导致归纳所得结论片面.

突破策略:

1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.

2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.

3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.

ⅳ.教学策略设计

根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.

学生的自主学习,具体落实在三个环节:

(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.

(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.

(3)性质应用阶段,学生自主举例说明指数函数性质的应用.

研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.

ⅴ.教学过程设计

1.创设情境建构概念

师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?

师:大家知道细胞分裂的规律吗?(出示情境问题)

[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x.

师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈r时,y=ax是否始终有意义,因此规定a0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.

[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.

[教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.

方案1:

生:(举例)函数y=3x,y=4x,…(函数y=ax(a1))

师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

生:函数y=0.5x,y= x,y=(-2)x,y=1x…

师:板书学生举例(停顿),好像有不同意见.

生:底数不能取负数.

师:为什么?

生:如果底数取负数或0,x就不能取任意实数了.

师:我们已经将指数的取值范围扩充到了r,我们希望这些函数的定义域就是r.

(若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为n+,师:我们已经将指数的取值范围扩充到了r,函数y=2x和y=0.84x中,能否将定义域扩充为r?你们所举的例子中,定义域是否为r?)

师:这些函数有什么共同特点?

生:都有指数运算.底数是常数,自变量在指数位置.

(若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.)

师:具备上述特征的函数能否写成一般形式?

生:可以写成y=ax(a0).

师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

方案2:

生:(举例)函数y=3x,y=4x,…(函数y=ax(a1))

师:板书学生举例(稍停顿),能举一个不太一样的例子吗?(提示:底数非得大于1吗?)

生:函数y=0.5x,y= x,…

师:这些函数的自变量是什么?它们有什么共同特点?

生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.

师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?

生:底数不能取负数.

师:为什么?

生:如果底数取负数或0,x就不能取任意实数了.

师:为了研究的方便,我们要求底数a0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)

[阶段小结]一般地,函数y=ax(a0且a≠1)称为指数函数.它的定义域是r.

[意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.

2.实验探索汇报交流

(1)构建研究方法

师:我们定义了一个新的函数,接下来,我们研究什么呢?

生:研究函数的性质.

〖问题2你打算如何研究指数函数的性质?

[设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.

[师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.

[教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.

师:(稍等片刻)我们一般要研究哪些性质呢?

生:变量取值范围(定义域、值域)、单调性、奇偶性.

师:(板书学生回答)怎样研究这些性质呢?

生:先画出函数图象,观察图象,分析函数性质.

生:先研究几个具体的指数函数,再研究一般情况.

师:板书“画图观察”,“取特殊值”

(若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢?)

(若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))

[意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.

(2)自主探究汇报交流

师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.

〖问题3选取数据,画出图象,观察特点,归纳性质.

[设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.

由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象 ,验证猜想.

数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.

[师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.

[教学预设]学生通过观察图象,发现指数函数y=ax(a0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.

生:自主选择数据,在坐标纸上列表作图,列出函数性质.

师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)

生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.

师:(过程性引导)底数你是怎么取的?你是怎样观察出结论的?在列表过程中,你有什么发现吗?为什么要在两个坐标系中画图?为什么不也取两个底数小于1?

师:(用彩笔描粗图象,故意出错)错在哪里?为什么?

生:指数函数是单调递增的,过定点(0, 1).

师:(引导学生规范表述,并板书)指数函数在(-∞, +∞)上单调递增,图象过定点(0, 1).

师:指数函数还有其它性质吗?

师:也就是说值域为(0, +∞).

生:指数函数是非奇非偶函数.

师:有不同意见吗?

生:当0

(其它预设:

(1)当a1时,若x0,则y1;若x0,则y1.

当00,则y1;若x0 y=“”1.

欲知谁正确,让我们一起来观察、研探.

思路2.复习元素与集合的关系——属于与不属于的关系,填空:(1)0n;(2)2q;(3)-1.5r.

类比实数的大小关系,如57,2≤2,试想集合间是否有类似的“大小”关系呢?(答案:(1)∈;(2)?;(3)∈)

推进新课

提出问题

(1)观察下面几个例子:

①a={1,2,3},b={1,2,3,4,5};

②设a为国兴中学高一(3)班男生的全体组成的集合,b为这个班学生的全体组成的集合;

③设c={x|x是两条边相等的三角形},d={x|x是等腰三角形};

④e={2,4,6},f={6,4,2}.

你能发现两个集合间有什么关系吗?

(2)例子①中集合a是集合b的子集,例子④中集合e是集合f的子集,同样是子集,有什么区别?

(3)结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?

(4)按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?

(5)试用venn图表示例子①中集合a和集合b.

(6)已知a?b,试用venn图表示集合a和b的关系.

(7)任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用venn图表示这个集合吗?

(8)一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?

(9)与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?

活动:教师从以下方面引导学生:

(1)观察两个集合间元素的特点.

(2)从它们含有的元素间的关系来考虑.规定:如果a b,但存在x∈b,且x a,我们称集合a是集合b的真子集,记作a b(或b a).

(3)实数中的“≤”类比集合中的 .

(4)把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为venn图.

(5)封闭曲线可以是矩形也可以是椭圆等等,没有限制.

(6)分类讨论:当a b时,a b或a=b.

(7)方程x2+1=0没有实数解.

(8)空集记为 ,并规定:空集是任何集合的子集,即 a;空集是任何非空集合的真子集,即 a(a≠ ).

(9)类比子集.

讨论结果:

(1)①集合a中的元素都在集合b中;

②集合a中的元素都在集合b中;

③集合c中的元素都在集合d中;

④集合e中的元素都在集合f中.

可以发现:对于任意两个集合a,b有下列关系:集合a中的元素都在集合b中;或集合b中的元素都在集合a中.

(2)例子①中a b,但有一个元素4∈b,且4 a;而例子②中集合e和集合f中的元素完全相同.

(3)若a b,且b a,则a=b.

(4)可以把集合中元素写在一个封闭曲线的内部来表示集合.

(5)如图1121所示表示集合a,如图1122所示表示集合b.

图1-1-2-1 图1-1-2-2

(6)如图1-1-2-3和图1-1-2-4所示.

图1-1-2-3 图1-1-2-4

(7)不能.因为方程x2+1=0没有实数解.

(8)空集.

有关高等代数高志让心得体会及收获五

甲方:_________

乙方:_________

丙方:_________

为了贯彻执行国家教委《高等学校教师培训规程》,实施《_________》,加强教师进修的管理,经甲、乙、丙三方协商签订如下协议。

一、在职进修形式:学历、学位进修、国内访问学者、单科进修、博士后研究。(注:在中打√ )

二、乙方在职学习期间,享受甲方在职教师同等福利待遇,仍可聘任专业技术职务。校内工资、奖金_________。(学院、部门必须填写)

三、为了保证乙方一定的学习时间,丙方可根据本单位实际情况,安排乙方的教学、科研等工作,工作量为_________。(学院、部门必须填写)

四、乙方在进修期间,和进修完成之后的_________年(服务年限)中必须在甲方工作。服务期限长于聘用合同期限的,聘用合同到期时,甲方要求终止合同的,不得追索乙方服务期的赔偿责任;甲方要求乙方继续履行服务期的,甲、乙双方应当续订聘用合同。如乙方不续订,则视为违约,须退还甲方和丙方资助的费用,并赔偿违约金(计算方法见第七条)。

五、甲方可根据需要缩短乙方的服务年限。

六、乙方在进修期间和聘用合同期限里不得受聘于其他企事业单位或辞职,不能申请自费出国(包括出国定居、留学、进修以及除探望配偶以外的探亲等)。如违约,乙方须退还甲方和丙方资助的费用,并赔偿违约金(计算方法见第七条)。

七、违约金具体算法为:

1.进修期间:退还费=甲方和丙方资助的费用;违约金=_________元/年(人民币)×服务年限

2.进修完成之后:退还费=甲方和丙方资助的费用÷服务年限×(应服务年限-已服务年限);违约金=_________元/年(人民币)×(应服务年限-已服务年限)

八、本协议须经甲、乙、丙三方签字后有效。

甲方(盖章):_________乙方(签字):_________

代表(签字):_________

_________年____月____日_________年____月____日

丙方(盖章):_________

代表(签字):_________

_________年____月____日

有关高等代数高志让心得体会及收获六

光阴似箭,转眼大学生活即将过去了,本人从进入大学以来,一向以严谨的学习态度和用心的工作热情投身于学习和工作中,虽然有过成功的喜悦,也有过失败的辛酸,然后日益激烈的社会竞争也使我充分认识到,若想成为一名德智体全面发展的优秀大学生,这些锻炼都是很基础的和必要的。大学时期的所学、所感、所悟将指导我一生受用!

在政治上,我有坚定的政治方向,用心上进,热爱祖国,热爱人民,坚决拥护中国共产党的领导,拥护党的各项方针政策,遵纪守法,勇于批评和自我批评,树立了正确的人生观和价值观。

在学习上,凭着对知识的渴望和追求,我一向严于律己,刻苦钻研,勤奋好学,态度端正,目标明确,为把自己,变成一个掌握现代信息和职业技能的合格,我牢固掌握了本专业的基础知识和技能,除此之外我还广泛猎取其他学科的知识,给自己更多的机会参与社会实践,做到理论联系实际。

在工作上,除了用心参与学校、系、班级组织的各项活动外,结合自身特长,我还用心参与学校、社会组织的各种网络设计比赛,并获得奖励,为学校争光,得到了学校、老师和同学们的认可。

在生活上,养成了良好的生活习惯,生活充实而有条理,有严谨的生活态度,良好的生活作风;为人热情大方,诚实守信,乐于助人。有自己为人处世的原则,与同学,朋友和睦相处,共同进步。

在体育方面,认真参与、学习学校开设的体育课程并圆满完成任务,用心参与各项课外活动,并不断丰富自己的阅历。年的大学生活,使自己的知识水平、思想境界、工作潜力都迈上了一个新的台阶。在这即将告别完美大学生活、踏上社会征途的时刻,我将以饱满的热情、坚定的信念、高度的职责感去迎接新的挑战,攀登新的高峰。

2.高等学校毕业生登记表自我鉴定

时光飞逝,四年大学青春的时光就从我们眼前无声无息的溜了过去。回顾在__大学生活的这四年,有很多回忆都值得我去珍藏和纪念,因为在这所大学里,留下了太多关于我成长的印记。还没有离开学校,我就已经无比的怀念起了我过去在学校里的时光。走在校园的林间小路上,我看任何一朵小花都感觉到它的不开心,看任何一颗小草也感觉他们都是在低垂着头,丧着气。离别的情绪已经充斥了我的大脑,让我无法从过去的回忆里面抽身开来。

还记得,大一刚进入学校的时候,我就被大学里面千奇百怪,丰富多彩的校园生活给吸引住了。大学的学校比我们高中的学校要大上很多倍不止。不仅有公园,还有池塘,还有多个篮球场,图书馆也建的有四层这样高,里面书籍很齐全,类目分的也很细。我在大学里最爱去的一个地方就是我们学校的图书馆,因为在读书馆里,我不仅能够感受到文化和艺术的熏陶,我还能感受到良好的学习氛围,更加能激励我想要读书的心。其次,我第二个去的比较多的地方就是我们学校的操场,因为在操场上,我不仅能够感受到青春的气息,我还能够加入进一群跑步远动,锻炼身体的大学生队伍中。所以大学的四年下来,我不但保持了一个健康的身体,我还养成了一个爱读书的好习惯。

另外,大学里的社团也比我们高中时期的社团多到数不过来。所以,根据自己的兴趣爱好,我给自己选了几个社团。一个是漫画社,一个是文学社,另外还有一个就是学生会的宣传部。参加前两个社团,目的只是为了培养我的兴趣爱好,加入学生会,就是为了锻炼我自己办事的能力。在这四年里,通过在社团和部门里面与同学们的相处,我学习到了他们身上的很多长处,改正了自己的缺点,在为人处世方面也变得越来越圆滑。

我在大学这四年里得到的成长还是很大的。不说扩大了自己的交际圈,就说积累下来了很多的人脉资源这一点也是值得肯定的。有所遗憾的就是没能在大学里把自己的学业知识打牢靠。这让我毕业出去以后,找工作会很难。但是在以后的人生道路上,我也要好好的吸取大学里的经验,来做到改正自己,完善自己。

有关高等代数高志让心得体会及收获七

数学与应用数学专业本科071班学生已学习数学分析、高等代数等课程,具有比较扎实的数学基础。

教材是闵嗣鹤、严士健编的《初等数论》(第三版,高等教育出版社,20xx年)。该书共有9章,即:第一章是整数的可除性;第二章是不定方程;第三章到第五章是同余,同余式,以及二次同余式与平方剩余;第六章是原根与指标;第七章是连分数;第八章是代数数与超越数;第九章是数论函数等。资料比较丰富,供教学时数为每周4节共72节的教学之用。本课程教学时数共36节,所以只选出与中学数学有密切联系的最基础的资料进行讲授。

(针对学生与教材的特点,拟订出相应的教改措施)

1、讲清基本概念、基本定理和基本方法;

2、精讲教学资料,只选出与中学数学有密切联系的最基础的资料进行讲授,重视学生解题训练,加强学生的作业指导;

3、注意运用各种教学原则、教学策略和方法,启迪学生思维;

4、重视数学思想方法的教学和数学本事的培养。

5、补充一些有关数论的数学竞赛题目,开拓学生祝福视野,注意培养学生数学学习兴趣。

有关高等代数高志让心得体会及收获八

紧张有序的高二教学工作已经结束了,经受了磨砺和考验的我,在各个方面都得到了很大的提高,尤其是学科知识的理解和业务水平方面更有了进步,这都离不开学校领导和同组的有经验的老师的支持和帮助。

这一年来我认真钻研数学中的每一个知识点,精心设计每一节课,虚心向教学经验丰富的教师请教,同时积极主动的学习老教师的实际教学方法,与此同时,我努力做好教学的各个环节,做好学生的课后辅导工作,注意学生的心理素质的提高。尽管我在教学中小心谨慎,但还是留下了一些遗憾。

为了以后更好提高教学效果。经过一番深思,我个人觉得高二数学教学,应该作到夯实“三基”,理顺知识网络。因为高考命题是以课本知识为载体,全面考查能力,所以,促进学生对基本知识、基本概念和基本方法的巩固掌握相当关键。我从中得到的教学反思如下:

通过一年来的高二的数学教学,以及对高考试题研究分析发现,数学考查的多是中等题型,占据总分的百分之八十之多,所以我认为,对于大多数的学生作好这部分题是至关重要的。我的做法是:加大独立解题和考场心理的模拟训练,这是我们可以进一步改善的地方,可大大提高整体的数学成绩。与此同时,又要有针对性地提高程度较好的学生,先从思想认识和学习方法上加以指导,提高拔尖人才,这样把一些偏、难、怪的内容减少一些,在平时考试中,特别注意对试题整体的把握,指导学生的整体学习思想。

20xx年的陕西理科数学试卷遵循“有助于高等学校选拔新生,有助于中学实施素质教育和课程改革,有助于对学生创新意识、实践能力的培养”的指导思想。命题根据了陕西省高中数学教学的实际情况,重点考查高中数学的主体内容,适当考查新课标的新增内容,体现了新课程改革的理念。试卷在考查基础知识、基本技能和基本能力的基础上,突出了对考生数学思维能力、应用意识和创新意思的考查。就是说高考最重视的是具有普遍意义的方法和相关的知识。尽管复习时间紧张,但我们仍然要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练,这样复习才有实效。在自己做题时有意识的找出最佳方法,尽量不要有较大的思维跳跃,同时结合参考题解加以取舍,也可以把精彩之处或做错的题目做上标记。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。

教师对试题要精心研究,对于试题,从考试的知识点,考查思想方法上加以体会,形成自己的认识,关键是举一反三,对于不同的知识点精心设计难度不等的各种试题,形成题库使学生有备而战,使得考场上的时间更多一点,同时提高学生的心理素质,做到不骄不躁,通过实践发现,这种因素且不可忽视。

新课程新增内容:简易逻辑、平面向量、线形规划、概率、是大纲修订和考试改革的亮点,在高考都有涉及。现行教学情况与过去相比,教学时间比较紧张,复习时间相对短,新增内容考察要求逐年提高,分值也不断加大,如向量已经成为分析和解决问题不可缺少的工具。又如函数的单调性问题既可以用导数解决也可以用定义解决。立体几何问题的处理既可以用传统方法也可以用向量方法。只有重视和加强新增内容的复习,才能紧跟教改和高考改革的步伐,提高学生的认知能力和思维能力。

我结合自身的情况,工作中,我首先在进行教学的过程中,把《新课程标准》精读一遍,平时通读争取做到心中有数,同时经常请教本组有经验的老师学习好的经验,其次我总是努力多听本组老师的课,这样最有利于把握一节课的教学重点和难点,掌握难点的突破方法,及时反思并结合自己学生的情况做为教学中的指导,再次我争取把近几年的全国的高考试题做一遍,认真研究,从知识、方法和思想上入手。

对于即将进入高三的学生而言,心理素质极其重要,以平和的心态参加考试,以实事求是的科学态度解答试题,培养锲而不舍的精神。考试是一门学问,高考要想取得好成绩,不仅取决于扎实的基础知识、熟练的基本技能和过硬的解题能力,而且取决于临场的发挥。我们要把平常的考试看成是积累考试经验的重要途径,把平时考试当做高考,从心理调节、时间分配、节奏的掌握以及整个考试的运筹诸方面不断调试,逐步适应,以应备高考。

有关高等代数高志让心得体会及收获九

用人单位接收函

福建农林大学____________学院:(由各学院分别填写本院名称,打印)

贵院20__届_____________学历___________________________专业毕业生____________________被我单位录用接收。特此证明。 用人单位全称(盖章):

毕业生签名:

年 月 日______________________________________________________________学院存根

用人单位接收函

福建农林大学毕业生就业指导中心:

贵校20__届____学院(由各学院分别填写本院名称,打印)__________学历________________专业毕业生________________被我单位录用接收。特此证明。

用人单位全称(盖章):

毕业生签名:

年 月 日

附:用人单位联系方式单位具体地址 邮政编码 单位隶属 □中属 □省属 □设区市属 □县(市、区)属 □县以下(含乡镇、村、居委会等) 单位类别 □党政机关 □科研设计单位 □高等教育单位 □中等、初等教育单位 □医疗卫生单位 □艰苦行业事业单位 □其它事业单位 □公有制企业单位 □非公有制企业单位 □艰苦行业企业 □部队 □农村建制村 □城镇社区 □社会团体 □民办非企业 □其他 单位联系电话 联系人

您可能关注的文档