手机阅读

比例尺案例讲座心得体会总结 比例尺听课心得体会(2篇)

格式:DOC 上传日期:2023-01-05 21:34:27 页码:10
比例尺案例讲座心得体会总结 比例尺听课心得体会(2篇)
2023-01-05 21:34:27    小编:ZTFB

心中有不少心得体会时,不如来好好地做个总结,写一篇心得体会,如此可以一直更新迭代自己的想法。那么心得体会怎么写才恰当呢?下面是小编帮大家整理的优秀心得体会范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

2022比例尺案例讲座心得体会总结一

教科书第54页例3,练习十二5,6,7题。

1.进一步理解正比例的意义,会运用正比例知识解决简单的实际问题。

2.通过运用正比例解决实际问题的活动,让学生体验数学的应用价值,培养学生解决问题的能力。

3.渗透函数思想,使学生受到辩证唯物主义观念的启蒙教育。

运用正比例知识解决简单的实际问题。

教具:多媒体课件。

学具:作业本,数学书。

一、复习引入

1.判断下面各题中的两种量是不是成正比例?为什么?

(1)飞机飞行的速度一定,飞行的时间和航程。

(2)梯形的上底和下底不变,梯形的面积和高。

(3)一个加数一定,和与另一个加数。

(4)如果y=3x,y和x。

2.揭示课题

教师:我们已经学过正比例的一些知识,应用这些知识可以解决生活中的实际问题。这节课,我们就来学习"正比例的应用"。

二、合作交流,探索新知

1.用课件出示例3

教师:这幅图告诉我们一个什么事情?需要解决什么问题?

教师:先独立思考,再小组合作交流,看能想出哪些方法解决这个问题。

2.全班交流解答方法

指导学生思考出:

(1)195÷5×8=312(元),先求每份报纸的单价,再求8份报纸的总价,就是李老师应付给邮局的钱。

(2)195÷(5÷8)=312(元),先求5份报纸是8份报纸的几分之几,即195元占李老师所付钱的几分之几,最后求出李老师所付的钱。

(3)195×(8÷5)=312(元),先求出8份报纸是5份报纸的几倍,再把195元扩大相同的倍数后,结果就是李老师所付的钱。

3.尝试用正比例知识解答

如果有学生想出用正比例方法解答,教师可以直接问:"你为什么要这样解?"让学生说出解题理由后再归纳其方法;如果学生没想到用正比例知识解答,教师可作如下引导。

教师:除了这些解题方法外,我们还会用正比例方法解答吗?请同学们用学过的有关正比例的知识思考:

(1)题中有哪两种相关联的量?

(2)题中什么量是不变的?一定的?

(3)题中这两种相关联的量是什么关系?

引导学生分析出:题中有所订报纸份数和所付总钱数这两个相关联的量,它们的关系是所付总钱数÷所订报纸份数=每份报纸单价,而题中的每份报纸单价一定,因此所付总钱数和所订报纸份数成正比例关系。

随学生的回答,教师可同步板书:

教师:运用我们前面所学的正比例知识,同学们会解答吗?准备怎样列比例式?

引导学生讨论后回答,先要把李老师应付的钱数设为x元,再根据所付总钱数所订份数=每份报纸单价的关系式,列式为1955=x8。

教师:同学们会计算吗?把这个比例式计算出来。

学生解答。

教师:解答得对不对呢?你准备怎样验算?

学生讨论验算方法,教师引导:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

三、课堂活动

1.出示教科书第49页的例1图和补充条件

竹竿长(m)26…

影子长(m)39…

教师:在这个表中有哪两种量?它们相关联吗?它们成什么关系?你是根据什么判断的?

教师出示问题:小明和小刚测量出旗杆影子长21m,请问旗杆有多高呢?根据刚才我们判断的比例关系,你能列出等式吗?

学生独立思考解答,讨论交流。

2.小结方法

教师:你觉得我们在用正比例知识解决上面两个问题的时候,步骤是怎样的?(初步归纳,不求学生强记,只求理解。)

(1)设所求问题为x。

(2)判断题中的两个相关联的量是否成正比例关系。

(3)列出比例式。

(4)解比例,验算,写答语。

四、练习应用

完成练习十二的5,6,7题。

五、课堂小结

这节课我们学习了什么知识?你有什么收获?

2022比例尺案例讲座心得体会总结二

《比例尺》一课是比例的应用第一课时,以比、比例为知识基础。本课时我预设的教学目标是理解比例尺的含义.会应用比例的知识求平面图的比例尺,以及根据比例尺求图上距离或实际距离。在课中我设计了这样三大板块:

两个城市之间的距离是一定的,但是在大小不同的两张中国地图上(出示两张中国地图),这两个城市之间的距离是不一样的,这是为什么呢?有什么奥密吗?

请学生量出每两个城市之间的距离,并求出图上距离和实际距离。

交流得出所求的比是1:41880000,为什么这几个比是一样的?再得出在同一幅图上,图上距离与实际距离的比是一定的,图上距离与实际距离的比叫做比例尺。

拓展题:上海到北京的距离是1050千米,在一幅地图上的距离是4厘米,广州到北京的距离是5880千米,在这幅地图上的距离是多少千米?这题可以依据比例尺一定写出比例计算。

一节课下来,学生参与学习的积极性很高,特别是在处理一个生成环节的时候,学生讨论得尤为激励:在第三环节计算图上距离时,如果在比例尺是1:5000000的地图上绘制两个城市的距离,与刚才这幅1:41880000的地图上比较,有什么不同?有学生说:图上距离会短一些,有学生说图上距离会长一些,这时教师适当地点拨:数据比较大,你能否举一个例子来证明自己的想法是正确的。于是,学生讲出了1:10和1:100两个比例尺,一个是图上1厘米代表实际10厘米,一个是图上1厘米代表实际100厘米,1厘米代表的实际距离越长在图上画的就越小。

1、教师扶得比较多,学生的活动没有充分展开。

2、课时划分应该更细化,本节课应更侧重于认识比例尺,对比例尺意义的理解上,课堂时间的分配应该更优化。

3、学习探究环节应该考虑得更为细致,同一道探究题可以给同桌两人大小不一的中国地图,造成矛盾冲突,更为深刻地理解比例尺的意义

4、学生用多种方法计算拓展题,教师逐一将这几种方法进行评价,而没有很好地将这几种方法联系起来,应该在评价反馈的过程中找到这几种方法之间的相通之处,不仅让学生进一步地理解本课时的内容,在基础之上加强拓展提升.

您可能关注的文档