手机阅读

数学解题心得体会和方法(优质20篇)

格式:DOC 上传日期:2023-11-19 05:03:52 页码:10
数学解题心得体会和方法(优质20篇)
2023-11-19 05:03:52    小编:ZTFB

这次的经历给了我很多启示。写心得体会要注意语言表达的准确性和文采的优美度,让读者感受到你的真实感受。欢迎大家阅读以下心得体会范文,共同进步和成长。

数学解题心得体会和方法篇一

实际状态:每个选项在2——4的范围内。

三不相同原则

即连续三个问题不会连续出现相同答案

答案排列不会出现abcde的英文字母排列顺序

中庸之道

即数值优先选择“中间量”选项,选项优先考虑bcd。在同一道题中优先考虑数值的“中间量”后考虑选项bcd。(如e选项对应数值为中间量时,优先从数值入手考虑)

出现诸如“以上结果都不对”的选项不予考虑

由提干给定信息入手,通过选项特征排除错误选项

选项基本特征如下:

单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值)

正值与负值(考前冲刺p12/25题根据提干排除负值)

有零与无零

区间的开与闭(看极端情况能否取等号)

正无穷与负无穷(通过极限考虑)

整数与小数(分数)

质数与合数

大于与小于

整除与不能整除

带符号与不带符号(例如根号、平方号等等)

少数服从多数原则

即看选项特征,具有同一特征多的选项优先考虑。

复杂表达式化简题

一般情况下选项出现1、2、0、-1、-2的情况比较多

前后无定位,连续几道题均不会都需猜蒙答案的情况

观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。

答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。

(1)要注意审题,我们在考试的时候一定要把题目多读几遍,弄清楚我们需要做的是什么,题目和选项之间有什么关系,弄清楚题目再动手去解答。

(2)答题时的顺序不一定要按照题号来进行。我们在做数学选择题的时候可以先从自己熟悉的题目开始,然后在去做自己不熟悉的题,因为这样做可以使我们更快的进入考试的状态,处理难题的时候才会有更强的自信。

(3)高考数学的选择题有大约七成的题都是按照直接法来解题的,所以我们要注意对富豪、概念、公式、定理等方面的理解和使用。例如函数和数列等题型就是考试常见的题目。

(4)要方法多样,高考数学是考察能力的考试,做题的时候要注意方法,要善于使用各种解题技巧,比如排除、验证、转化、估算等技巧。一旦有了思路就要尽快作答,不要在一些小提上过多的浪费时间,如果实在没有思路,我们也要坚定信心,就算是蒙题,也有四分之一的几率蒙对。

(5)在做数学选择题的时候,一定要控制好时间,最多不要超过四十分钟,为后面答题留下时间,以免时间浪费过多导致答不完卷。

数学解题心得体会和方法篇二

常听同学抱怨,作业太多,做不完了,有的同学为应付还不惜抄袭作业,影响出色品质的形成。了解下来,问题大多是在时间安排上。觉得辛苦的同学,他们的作业都是在弹性的时间内完成,想做就做些,不想做就玩会儿;或者慢条斯理,认为时间还有的是,等会再完成。有一次,作业量并不大,可是有位同学居然没完成,他坦诚的说,晚上应该花上半小时就完成,可是当走到电视前时,就自我安慰,看会吧,睡前再做,而到睡前又想起语代老师布置的“周记”明天早自习要交,只有先写周记,早自习再做吧,早自习外语老师来检查背诵,所以就误了事。

但是,大部分同学还是对数学作业高度重视,应对自如,甚至还学有余力,额外做了些提高题,所以他们经常要求老师多布置些作业。调查下来,有两个是他们的共同特点:一是他们做作业限时完成,不拖拉,干净利落,遇到困难,待各项任务基本完成后,再进行钻研。另一方面,他们做到了心动不如行动。他们拿到问题,常常是立即投入战斗,而不是去想今天有多少作业,需多少时间,难度是否太大,能不能完成得了等等。他们遇到难题是先能做多少就做多少,能解决到什么程度就解决到什么程度,当解决了问题的部分时,常常会闪出好念头,悟出问题的解决方案。实际上每解决一点就是向目标靠近一步,这就是“吹尽黄沙始得金”的道理。

数学解题心得体会和方法篇三

如何改善数学的解题能力?数学在命题方面千变万化,知识点又非常容易综合穿插,所以,对那些不擅长整合知识、对数学概念缺乏理解的同学来讲,难免会感到数学很“难"。本文将为同学介绍一套适合广大学生使用的数学复习标准步骤。

平时大家评论一个孩子“聪明”或者“不聪明”的依据是看这个孩子对某件事或很多事得反应以及有没有他自己的看法。如一个“聪明”的孩子,往往反应快、思路清楚,有自己的主见。那么我们认为“反应快、思路清楚、有主见”是聪明的前提。学习成绩好的同学,反应快、思路清楚、有主见就是他们的条件。

那么解题也如此,须反应快、思路清楚、有主见。同一道题,不同的学生从不同的角度去理解,由不同的看法终汇聚成正确的解题过程,这是解题的选然。无论是推导、还是硬性套用、凭借经验做题,都是思路的一种。有的同学由开始思路不清渐渐转变为清楚,有的同学根本没有思路,这就形成了做题的上的差距。

如果能教会给学生,在处理数学问题上,短的思考路径,并且清晰无比,这样,每个学生都是“聪明的孩子”,在做题上就能攻无不克战无不胜。解题思路的来源就是对题的看法,也就是第一出发点在哪。

数学解题思想其实只要掌握一种即可,即须要性思维。这是解答数学试题的万用法门,也是直接、快捷的答题思想。什么是须要性思维?须要性思维就是通过所求结论或者某一限定条件寻求前提的思想。几乎所有数学命题都可以用这一思想进行破解。这里我用视频来举两个简单的例子,说明数学须要性思维是如何应用的。

纵观近几年高考数学试题,可以看出试题加强了对知识点灵活应用的考察。这就对考生的思维能力要求大大加强。如何才能改善思维能力,很多考生便依靠题海战术,寄希望多做题来应对多变的考题,然而凭借题海战术的功底仍然难以获得科学的思维方式,以至收效甚微。主要的原因就是解题思路随意造成的,并非所谓“不够用功”等原因。由于思维能力的原因,考生在解答高考题时形成一定的障碍。主要表现在两个方面,一是无法找到解题的切入点,二是虽然找到解题的突破口,但做这做着就走不下去了。如何解决这两大障碍呢?本章将介绍行之有效的方法,使考生获得有益的启示。

遇到有一定难度的考题我们会发现出题者设置了种种障碍。从已知出发,岔路众多,顺推下去越做越复杂,难得到答案,如果从问题入手,寻找要想获得所求,须要做什么,找到“需知”后,将“需知”作为新的问题,直到与“已知“所能获得的“可知”相沟通,将问题解决。事实上,在不等式证明中采用的“分析法”就是这种思维的充分体现,我们将这种思维称为“逆向思维”——目标前提性思维。

其实数学解题的`每一步推理和运算,实质都是转换(变形).但是,转换(变形)的目的是更好更快的解题,所以变形的方向选定是化繁为简,化抽象为具体,化未知为已知,也就是创造条件向有利于解题的方向转化.还须注意的是,一切转换须是等价的,否则解答将出现错误。解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。寻找差异是变形依赖的原则,变形中一些规律性的东西需要总结。在后面的几章中我们列举的一些思维定势,就是在数学思想指导下总结出来的。在解答高考题中时刻都在进行数学变形由复杂到简单,这也就是转化,数学式子变形的思维方式:时刻关注所求与已知的差异。

1、揭示规律----掌握解题方法

高考试题再难也逃不了课本揭示的思维方法及规律。我们说回归课本,不是简单的梳理知识点。课本中定理,公式推证的过程就蕴含着重要的方法,而很多考生没有充分暴露思维过程,没有发觉其内在思维的规律就去解题,而希望通过题海战术去“悟”出某些道理,结果是题海没少泡,却总也不见成效,终只能留在理解的肤浅,仅会机械的模仿,思维水平低的地方。因此我们要侧重基本概念,基本理论的剖析,达到以不变应万变。

2、融会贯通---构建网络

在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,后造成记忆不牢,考试时失分。在课本函数这章里,有很多重要结论,许多学生由于理解不深入,只靠死记硬背,后造成记忆不牢,考试时失分。

3、加强理解----改善能力

复习要真正的回到 重视 基础的轨道 上来。没有基础谈不到不到能力。这里的基础不是指机械重复的训练,而是指要搞清基本原理,基本方法,体验知识形成过程以及对知识本质意义的理解与感悟。只有深刻理解概念,才能抓住问题本质,构建知识网络。

4、思维模式化----解题步骤固定化

解答数学试题有一定的规律可循,解题操作要有明确的思路和目标,要做到思维模式化。所谓模式化也就是解题步骤固定化,一般思维过程分为以下步骤:

(1)审题

(2)明确解题目标.关注已知与所求的差距,进行数学式子变形(转化),在需知与可知间架桥(缺什么补什么)

数学解题心得体会和方法篇四

数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。

对于数学解题思维过程,g.波利亚提出了四个阶段*(见附录),即弄清问题、拟定计划、实现计划和回顾。这四个阶段思维过程的实质,可以用下列八个字加以概括:理解、转换、实施、反思。

第一阶段:理解问题是解题思维活动的开始。

第二阶段:转换问题是解题思维活动的核心,是探索解题方向和途径的积极的尝试发现过程,是思维策略的选择和调整过程。

第三阶段:计划实施是解决问题过程的实现,它包含着一系列基础知识和基本技能的灵活运用和思维过程的具体表达,是解题思维活动的重要组成部分。

第四阶段:反思问题往往容易为人们所忽视,它是发展数学思维的一个重要方面,是一个思维活动过程的结束包含另一个新的思维活动过程的开始。

数学解题心得体会和方法篇五

直接从数学题设条件出发,运用有关概念、性质、定理、法则等知识,通过推理运算,得出结论,再对照选择项,从中选正确答案的方法叫直接法。

用特殊值(特殊图形、特殊位置)代替数学题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确判断的方法叫特例法。常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等。

从数学题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确判断的方法叫筛选法或剔除法。

将各个数学选择项逐一代入题设进行检验,从而获得正确判断的方法叫代入法,又称为验证法,即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案。

据数学题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确判断的方法叫图解法或数形结合法。

数学解题心得体会和方法篇六

拿到试卷后,先要通览,摸透题情。一是看题量多少,有无印刷问题;二是对通篇试卷的难易做粗略的了解。

审题要逐字逐句搞清题意,似曾相识的题目更要注意异同,从多层面挖掘隐含条件及条件间内在联系。吃透题意,例如:“两圆相切”,就包括外切和内切,缺一不可。

中考的考题是由易到难,顺利解答几个简单题目,可以使考生信心倍增。从近年来中考数学卷面来看,考试时间很紧张,考生几乎没有时间检查,这就要求在答卷时认真准确,争取“一遍成”。

遇到难题要敢于暂时“放弃”,不要浪费太多时间。

一般来说,选择题和填空题,优秀考生答每道题的时间不超过40秒,差一点的考生不超过2分钟。把会做的题目解答完后,再回头集中精力解决难题。在答题时要合理安排时间,不要在某个卡住的题上打“持久战”。

卷面书写既要速度快,又要整洁、准确。电脑阅卷要求考生填涂答题卡准确,字迹工整,大题步骤明晰。

草稿纸书写要有规划,便于回头检查。不少计算题的失误,都是因为书写太潦草。正确的做法是:在答题卡上列出详细的步骤,不要跳步。只有少量数学运算才用草稿纸。

事实证明:踏实地完成每步运算,解题速度就快;把每个会做的题目做对,考分就高。

答选择题可用三大方法。

排除法:根据题设和有关知识,排除明显不正确选项。

特殊值法:根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。用特殊值法解题要注意所选取的值要符合条件。

猜想、测量的方法:直接观察或得出结果。这类方法在近年来的中考题中常被运用于探索规律性的问题。

直接法和图解法是填空题的基本解法。

直接法:根据题干所给条件,直接计算、推理,得出正确答案。

图解法:根据题干提供信息,绘出图形,从而得出正确的答案。

填空题虽然多是中低档题,但不少考生在答题时往往出现失误。首先,应按题干的要求填空,如一些附加条件,如精确到哪一位,有无单位。再者应认真分析题目的隐含条件。填空题不要求写出解题过程,填错、部分填对都将计零分。

靠准确完整的数学语言表述,才能避免出现“会而不对”“对而不全”的情况。代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分会少得可怜。“心中有数”却说不清楚,扣分者也不在少数。

最后几题要注意这些点:化简正确、体现三角函数值、代值过程、画图题是否画在格点上、画向量注意方向、证明步骤一定完整、用到三角函数一定准确、分析好图表、关键性步骤不能缺少、注意有无相等关系、注意等腰的分类、相似的分类等。

数学解题心得体会和方法篇七

逐步增加题目难度人们认识事物都是从易到难,从简单到复杂,那么数学做题也是一样的,如果同学们一开始做题就挑那种难度比较大的题目来做,那么这自然会打击同学们的做题热情,也会打击同学们的自信心。所以如果同学们想要让自己保持一个良好的做题心态,那么就应该从简单的题目开始做起,一点点的增加做题难度,这样做题,同学们心理比较容易接受一些。

对于一道具体的数学题目,最重要的解题步骤就是审题,通过审题,同学们能够获取题目的出题意旨,通过题目的意旨,同学们就可以按照指示一步步来完成题目需要我们解答的问题。同学在审数学题目的时候要注意找出已知条件,未知条件,隐含条件,通过已知条件推算出题目答案,同学们做数学题目一定要记住这一点:心急吃不了热豆腐,所以一定要一步一个脚印。

同学们做数学题的时候需要清楚一点,那就是不要为解题而解题,做数学题目是为了掌握数学知识的,比如数学教材中的概念、定理、公式等等。如果同学们能够利用这些来解答出数学题目,那么同学们就掌握了这些知识点,若是没能够掌握,那么在做题之前一定要先熟悉它们。

数学解题心得体会和方法篇八

数学作为一门科学,几乎贯穿了我们整个学业阶段。在学习数学的过程中,不可避免地会遇到各种各样的数学问题,这就需要我们掌握一些解题技巧和心得体会。下面我将从自己的学习经验出发,分享一些数学解题的心得。

首先,我认为要善于分析问题。遇到一个数学问题时,首先要明确题目的要求和条件,然后分析题目中的关键信息。有时候,题目看似复杂,但只要将问题分解成更小的部分,再逐个解决就会变得迎刃而解。例如,在解方程时,可以先整理方程式的形式,再通过逆向思维一步步还原变量的值。分析问题的过程中,要学会找到问题的本质,这样才能找到解题的正确方法。

其次,要培养良好的数学思维方式。数学解题需要一种逻辑思维和推理能力。在解题时,要善于运用一些数学原理和概念,灵活运用各种运算符号与方法。此外,还应该注重培养自己的空间想象力,因为空间想象力在几何题中扮演着重要角色。数学思维方式的培养需要大量的练习和反思,只有通过不断地思考和实践,才能逐渐培养起这种思维方式。

第三,要注重细节和套路。数学解题,特别是一些较复杂的问题,常常需要注意到一些细小的地方。例如,在解应用题时,要仔细阅读题目,将条件转化成数学模型。在解几何题时,要注意到图形中一些特殊的线段和角度关系。此外,还选题解法中存在一些套路和技巧,熟练掌握它们可以大大提高解题效率。例如,在解方程时,可以通过因式分解和配方法来简化方程式的形式,进而找到解。掌握这些细节和套路,可以让我们在解题过程中事半功倍。

第四,要勤于总结和归纳。对于经典的数学题目,我们可以总结出一些通用的解题方法和技巧,以备后用。对于自己遇到的难题,要及时总结经验教训,归纳出解题的思路和关键步骤,方便下次遇到类似的问题时可以更快地解决。此外,还可以与同学和老师交流讨论,听取他们的解题思路和建议,以便开阔自己的思路和视野。

最后,要保持良好的心态。数学解题是一项需要思考和耐心的工作。有时候,我们可能会遇到一些困难和挫折,但要保持积极的心态,坚持下去。对于解题中的错误和困惑,不要气馁,要勇于面对和改正。只有充满信心和乐观的心态,才能更好地面对数学解题的挑战。

总的来说,数学解题是一种思维活动和实践运用的过程。通过分析问题、培养数学思维、注重细节和套路、勤于总结和归纳、保持良好的心态,我们可以提高数学解题的能力和水平,更好地应对数学学习中的各种问题。希望我们每个人都能善于解题,喜欢数学,从中体会到数学的奇妙之处。

数学解题心得体会和方法篇九

从高考数学试题中可以明显看出,高考重视对基础知识、基本技能和通性通法的考查.所谓通性通法,是指具有某些规律性和普遍意义的常规解题模式和常用的数学思想方法.现在高考比较重视的就是这种具有普遍意义的方法和相关的知识.例如,将直线方程代入圆锥曲线方程,整理成一元二次方程,再利用根的判别式、求根公式、根与系数的关系、两点之间的距离公式等可以编制出很多精彩的试题.这些问题考查了解析几何的基本思想方法,这种通性通法在高中数学中是很多的,如二次函数在闭区间上求最值的一般方法:配方、作图、截段等.考生在复习的过程中要对这些普遍性的东西不断地进行概括总结,不断地在具体解题中细心体会.

现在的高考命题的一个原则就是淡化特殊技巧,考生在复习中千万不要去刻意追求一些解题的特殊技巧,尽管一些数学题目有多种解法,有的甚至有十几种解法,但这些解法中具有普遍意义的通用解法也就一两种而已,更多的是针对这个题目的专用解法,这些解法作为兴趣爱好去欣赏是可以的,但在高考复习中却不能把它当作重点.数学属于思考型的学科,在数学的学习和解题过程中理性思维起主导作用,考生在复习时要更多地注重“一题多变”(类比、拓展、延伸)、“一题多用”(即用同一个问题做不同的事情)和“多题归一”(所谓“一”就是具有普遍意义和广泛迁移性的、“含金量”较高的那些策略性知识),更多地注重思考题目的“核心”是什么,从题目中“提炼”反映数学本质的东西.掌握好数学模式题的通用方法.

数学解题心得体会和方法篇十

以前学过的知识要全面掌握和理解,在心中建立知识网络。打好基础,首先须重视数学基本概念、基本定理(公式、法则)的复习,在理解上下功夫,整体把握数学知识。这部分内容的复习要做到不打开课本,能选择适当途径将它们回忆出,它们之间的脉络框图,能在自己大脑中勾画出来。如函数可以利用框图的形式由粗到细进行回忆。

概念要抓住关键及注意点,公式及法则要理解它们的来源,要理解公式法则中每一个字母的含义,即它们分别表示什么,这样才能正确使用公式。在平时学习时,不要满足于得到答案就行了,而其他的方法却不去研究,尤其课堂上,老师通过一个典型的例题介绍处理这种问题有哪些方法,可以从哪些不同的角度来思考问题。方法没有好坏之分,只是在解决具体的问题时才有优劣之分,更重要的是要关注通性、通法的掌握,而不是仅关注此问题特殊的、简单的方法。

数学解题心得体会和方法篇十一

gre数学具体题型主要有多选1;多选多;填答案;比大小。但是将引入更多的生活场景并且更加突出对考生解读数字的能力的考察。

事实上,回读和反复阅读的原因很简单,当一个新的gre数学题目里面的信息过载,但相对复杂的话题,唯一的问题是不记笔记,读回的结果,忘记了以前的最后一个后读数条件是不完整的,所以他又回到了以前的条件,等了好几次才找到所有条件,问题开始。和很多的数字表示完全用英语授课,而不是阿拉伯数字,如八百,四十等,在这个时候,如果你不关闭的英文为阿拉伯数字,最后的`问题后,即使重新读回来的标题数字,浪费时间。

然而,如果学生做新gre数学问题,在阅读过程中,阅读每一个字就把这句话里面的信息点和数字只是写下英文成数学表达式,所以等到看完题目后,草稿纸上显示完整的全路范围内,主题和信息点,看笔记可以立即开始做的问题。信息点,因为每一个字都被转化成音符,整条道路将毫无疑问是必要的回读。的习惯,纠正他们的回读的学生可以拿一张小卡片,写下每一行,并读取信息点后,这条线覆盖,没有回读。随着时间的推移,一次的习惯,这将大大减少回读,反复读了一些问题,以提高阅读速度。

记笔记的习惯,阅读的问题是可以解决的不仅是速度,而且还可以提高做题的准确性。因为读这个动作是小于的信息摄入量,写这个动作,读标题时,读起来很流畅了很多问题,信息点通过,但直到真正的一点要注意的信息,您将发现,当有些人读它很容易被忽略的细节,而这些细节往往决定对与错做最后的冠军。

数学解题心得体会和方法篇十二

第一段:引言(约200字)。

数学解题是学习数学过程中必不可少的一部分。每个学生都会在学习数学的过程中遇到各种各样的问题,而解决这些问题的过程中,往往需要使用数学知识和技巧。经过长时间的学习和实践,我逐渐积累了一些数学解题的心得体会。在这篇文章中,我将分享我的心得体会,希望对其他人的数学学习和解题有所帮助。

第二段:理解题意(约250字)。

在解题之前,最关键的一步是确保自己对题意有足够的理解。有时候题目的表达可能有些晦涩难懂,所以我经常会把问题重新阐述一遍,用自己的话把题意理清楚。这个过程可能需要多次重复,但它能够帮助我建立起对问题的全面理解,避免在解题过程中走入错误的方向。

第三段:抓住关键(约250字)。

数学解题时,历史题号的重要一环就是要抓住关键。有时候一个问题可能会给出很多无关的信息,而关键信息往往埋藏在这些无关信息中。所以,我会仔细阅读题目,并从中提取出问题的核心要素。我会寻找到题目中给出的条件、已知的关系以及问题的要求,并找出它们之间的关联。通过抓住问题的关键,我能够更快地找到解题思路。

第四段:选择合适的解题方法(约250字)。

在解题过程中,了解各种解题方法对提高解题能力非常重要。数学中有很多不同的解题方法,比如代数法、几何法、推理法等。不同的方法适用于不同类型的问题,所以要根据题目要求和自身掌握情况选择合适的解题方法。有时,一个问题可能还可以借助多种方法来解决,这时候我会尝试使用不同的方法,以便更好地理解和掌握解题的过程。

第五段:多练习,多思考(约250字)。

在数学解题中,多练习是提高解题能力的关键。我会通过做大量的习题来加深对数学知识和解题技巧的理解。通过不断地练习,我能够更加熟悉各类问题的解题方法,并且在实践中不断提高解题的速度和准确性。除了练习,我还会时常对解题过程进行反思和总结。我会思考自己在解题过程中遇到的问题和困惑,并寻找一些解决问题的方法和技巧。通过这种思考和总结,我能够加深对数学解题过程的理解,提高自己的解题能力。

结尾(约200字)。

总而言之,数学解题是一门需要认真思考和不断实践的学问。通过以上的几点心得体会,我在数学解题中取得了不小的进步。我相信,只要我们能够正确理解题意,抓住问题的关键,选择合适的解题方法,并且多加练习和思考,我们都能够在数学解题中取得不错的成绩。希望我的心得体会能够对其他学习数学的人有所帮助,让我们共同进步,掌握好数学解题的技巧和方法。

数学解题心得体会和方法篇十三

运用概念、判断、推理来反映现实的思维过程,叫抽象思维,也叫逻辑思维。

抽象思维又分为:形式思维和辩证思维。客观现实有其相对稳定的一面,我们就可以采用形式思维的方式;客观存在也有其不断发展变化的一面,我们可以采用辩证思维的方式。形式思维是辩证思维的基础。

形式思维能力:分析、综合、比较、抽象、概括、判断、推理。

辩证思维能力:联系、发展变化、对立统一律、质量互变律、否定之否定律。

小学、中学数学要培养学生初步的抽象思维能力,重点突出在:

(1)思维品质上,应该具备思维的敏捷性、灵活性、联系性和创造性。

(2)思维方法上,应该学会有条有理,有根有据地思考。

(3)思维要求上,思路清晰,因果分明,言必有据,推理严密。

(4)思维训练上,应该要求:正确地运用概念,恰当地下判断,合乎逻辑地推理。

9、对照法。

如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。

这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。

10、公式法。

运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。

11、比较法。

通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。

比较法要注意:

(1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。

(2)找联系与区别,这是比较的实质。

(3)必须在同一种关系下(同一种标准)进行比较,这是“比较”的基本条件。

(4)要抓住主要内容进行比较,尽量少用“穷举法”进行比较,那样会使重点不突出。

(5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。

数学解题心得体会和方法篇十四

发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

逆向思考,正难则反。

对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。

还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。

也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

数学解题心得体会和方法篇十五

(1)观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。

(2)实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。

2.比较与分类。

(1)比较法。

是确定事物共同点和不同点的思维方法。在数学上两类数学对象必须有一定的关系才好比较。我们常比较两类数学对象的相同点、相异点或者是同异综合比较。

(2)分类的方法。

分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。如上图中一次函数的k在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。

3.特殊与一般。

(1)特殊化的方法。

4.联想与猜想。

(1)类比联想。

类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。

数学解题心得体会和方法篇十六

“有所不为才能有所为,大胆取舍,才能确保中考数学相对高分。”针对中考数学如何备考,著名数学特级老师说,这几个月的备考一定要有选择。

“首先,要进行一次全面的基础内容复习,不能有所遗漏;其次,一定要立足于基础和难易度适中,太难的可以放弃。在全面复习的基础上,再次把掌握得似懂非懂,知道但又不是很清楚的地方搞清楚。在做题练习上要学会选择,决不能不加取舍地做题,即便是老师布置的作业,也建议同学们选择性地做,已经掌握得很好的不要多做,把好像会做但又不能肯定的题认真做一做,把根本没有感觉的难题放弃不做。千万不要到处去找各个学校的考试题来做,因为这没有针对性,浪费时间和精力。”

某外国语学校资深中考数学老师建议考生在中考数学的备考中强化知识网络的梳理,并熟练掌握中考考纲要求的知识点。

“首先要梳理知识网络,思路清晰知己知彼。思考中学数学学了什么,教材在排版上有什么规律,琢磨这两个问题其实就是要梳理好知识网络,对知识做到心中有谱。”他说,“其次要掌握数学考纲,对考试心中有谱。掌握今年中考数学的考纲,用考纲来统领知识大纲,掌握好必要的基础知识和过好基本的计算关,做到基本知识不丢一分,那就离做好中考数学的答卷又近了一步。根据考纲和自己的实际情况来侧重复习,也能提高有限时间的利用效率。”

广州中考研究中心老师表示,距离中考越来越近,一方面需按照学校的复习进度正常学习,另一方面由于每个人学习情况不一样,自己还需进行知识点和丢分题型的双重查漏补缺,找准短板,准确修复。

压轴题坚持每天一道,并及时总结方法,错题本就发挥作用了。最后每周练习一套中考模拟卷,及时总结考试问题。我们做题的原则是先搞懂搞透错题,再做新题。如果没有时间做新题,多花时间思考、沉淀错题是更有效的学习方法。

中考是一场选拔性的考试,紧张是难免的,只要不过度紧张,适度紧张也是必要的,而且紧张的不是你一个人,大家都紧张。最后要明白决定中考成败的不是压轴题而是简单题,千万不要在难题上不舍得,做到会做的题不丢分就好,这就需要你平时做题专注用心。

练兵千日,用在一时,关于中考应考技巧有几点做法:解题习惯要端正,由于是电脑阅卷,所以平时答题时就养成左对齐按列写的答题习惯;阅题习惯的养成,中考都会提前发卷,考生可利用这段时间,将试卷浏览一遍,大致了解题量、题型,了解试题的难易度,做到心中有数,通览全卷,把握全局。答题习惯上,先易后难,合理支配答题时间。进入考场后考生特别紧张,可轻拍几下额头,做几个深呼吸,紧张的情绪就会得到缓解。

数学解题心得体会和方法篇十七

数学是一门让许多人头疼的学科,然而,对于善于思考和挑战自我的人来说,数学解题是一种乐趣和享受。通过数学解题,人们可以培养自己的逻辑思维能力、创造力和解决问题的能力。在解决数学问题的过程中,我积累了许多心得体会,下面我将分享我所了解的五个关于数学解题的心得。

第一,理解问题是解题的关键。在解题之前,我们首先要理解问题。这意味着要读懂题目并找出其与数学知识之间的联系。有时,问题的描述可能很复杂,但只有当我们理解问题的本质时,才能找到解决问题的途径。例如,当我解决一个几何问题时,我会先仔细阅读问题,然后再画出形状,通过观察和推理,找到解题的线索。

第二,建立数学模型能够简化问题。在解决数学问题时,建立数学模型是非常重要的。模型是对问题的一种抽象和简化,通过建立模型,我们可以将问题转化为数学符号和公式的形式,使问题更具可操作性。例如,在解决一个应用题时,我们可以将题目中需要求解的量定义为变量,并根据题目中的关系式建立方程,从而可以用代数方法解决问题。

第三,不同的解题方法可以得到不同的答案。在数学解题中,通常有多种方法可以解决同一个问题。每个人的思维方式和数学技巧都不尽相同,因此,解题方法也会因人而异。有时,同一个问题可以用代数方法、几何方法或图表方法等多种方法来解决,而各种方法得到的答案可能也不尽相同。这就需要我们在解题过程中多样化思维,尝试不同的方法,以便得到更全面和准确的答案。

第四,反复实践是提高解题能力的关键。数学解题需要不断的实践和练习才能提高。通过反复实践,我们可以熟悉各种解题技巧和方法,培养自己的数学思维能力。有时,我们可能会遇到一些困难的问题,甚至找不到解决办法。但只要我们坚持下去,不断探索和实践,就一定能够克服困难,提高解题的能力。

第五,与他人讨论可以拓宽思路。在解决数学问题时,与他人讨论可以激发出新的思路和解题方法。与他人讨论问题可以听取不同的观点和建议,从而开阔自己的视野,拓宽思路。有时,他人的想法可能会启发我们寻找新的解题途径,而通过与他人共同思考和讨论,我们也可以互相学习和进步。

综上所述,数学解题是一项让人愉快并且具有挑战性的任务。在解题过程中,我们需要理解问题、建立数学模型、尝试不同的解题方法、进行反复实践,并与他人讨论来拓宽思路。通过这些心得体会,我相信每个人都可以在数学解题中取得更好的成绩,并培养出更为重要的思维和解决问题的能力。数学不仅仅是一门学科,更是一种思考和探索的方式。

数学解题心得体会和方法篇十八

联想即有一种心理过程而引起另一种与之相连的心理过程的现象。知识的掌握过程中的联想即以所形成的问题的表征为提取线索,去激活脑中有关的知识结构。联想是使抽象化或概括化的知识得以具体化的必要环节,解决问题总是依赖过去的知识经验。比如在解决数学问题时,根据所形成的问题表征,去激活回忆与该问题有关的知识方法、公式、定理、定义、学过的例题、解过的题目等,并考虑能否利用它们的结果或者方法,克服在引进适当的辅助元素后加以利用,能否找出与该问题有关的一个特殊的问题或一个一般的问题或一个类似的问题。如果能够从所给问题中辨认出符合问题目标的某个熟悉的模式,那么就能提出相应的解题设想,进而解决问题。

在解题过程中,联想活动的进行将因问题的复杂程度和学生对所学知识的掌握程度的不同,而有扩展与压缩、直接与间接。意识到知识的重现与意识到知识的重现的分别,有些情况下,学生不能联想,难以激活原来的知识结构,或者即使联想,但联想的内容错误,常受到与其相近的比较巩固的旧的知识的干扰。其主要原因是领会水平较低或者领会错误,或原有的知识不巩固,或缺乏联想的技能。为产生准确而灵活的联想,除了要保证知识的领会和巩固外,还要有目的的进行联想技能的训练。

解析解题途径。

解析即分析事物的矛盾,分析已知和未知双方的内部联系,寻找解决矛盾的条件和方法,数学解题中的解析即统一的分析问题中各部分的内在联系,分析问题的结构。将问题结构的各部分与原有知识结构的有关部分进行匹配,解析的结果往往表现为提出解决当前问题的各种设想、制定具体的计划与步骤。探索解决问题的方法有多种多样,比如在解决数学问题时,可以通过分析、综合等基本的思维活动,并依据已有的知识,将问题的条件或结论作适当的变更和转换。

使之更易于利用某种原理或者概念来解决问题;也可以通过变换,使眼前的问题特殊化或者一般化;还可以利用适当的辅助问题。在探索解题方法的过程中,有时需要不断的多次变更问题,综合应用各种方法。解析是具体化过程的核心环节,决定着具体化的水平。为此,在教学中应对解析技能的培养给予高度的重视。教师可以遵循心智技能形成和培训的规律,来传授和提高学生的解析能力。

数学解题心得体会和方法篇十九

第一段:引言(150字)。

数学一直以来都是学生们最头疼的学科之一。为了帮助学生更好地提高数学成绩,教育界推出了各种数学解题模板。数学模板的使用旨在帮助学生系统地理解和应用解题方法,提高他们的解题能力。在我的学习过程中,我也尝试过使用数学模板来解题,现在我想分享一些我的心得和体会。

第二段:解题方法的系统性理解(250字)。

使用数学模板的第一步是对解题方法进行系统性的理解。传统的记忆式学习只能帮助学生记住一些解题公式和方法,但却不能真正帮助他们理解这些公式和方法背后的原理。而数学模板的使用则注重培养学生对数学概念和思维方法的理解。通过理解解题方法的逻辑推理和应用规律,学生可以更好地理解并运用数学解题方法。

第三段:解题过程的规范化实施(250字)。

数学模板还能帮助学生规范化实施解题过程。在解题过程中,学生往往容易因为疏忽或迷茫而出错。这时,数学模板可以作为学生解题的指南,帮助他们按照正确的步骤和逻辑顺序来解题。学生只需要按照模板提供的指导操作,就能避免一些低级错误和无效的尝试,提高解题的成功率。

第四段:解题思维的拓展与创新(300字)。

数学模板的使用不仅仅可以帮助学生解决具体问题,还能激发他们的解题思维的拓展与创新。解题模板通常是基于一定的规律和方法总结出来的,并不能涵盖所有的解题情况。因此,学生在使用数学模板的过程中,有时需要根据实际问题来调整和创新解题思路。这样,他们就能更好地理解和应用数学概念,培养自己的问题解决能力。

第五段:总结与展望(250字)。

总结而言,数学模板是一种有助于学生提高数学解题能力的学习模式。通过系统性理解解题方法、规范化实施解题过程以及拓展与创新解题思维,学生可以更好地解决数学问题,并进一步提高自己的数学成绩。然而,数学模板也不是万能的,学生们仍然需要通过大量练习和实践来巩固和深化数学知识。希望通过使用数学模板,更多的学生能够在数学学习中取得更好的成绩。

数学解题心得体会和方法篇二十

考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面6.先高后低。即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

考试的又一个特点是以卷面为唯一依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。

会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。下面有两种常用方法。

对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。当然,求解过程和结果都不能离开实际背景。

对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

您可能关注的文档