通过总结心得,我们能够更好地吸取教训,改进自己的不足之处。写一篇较为完美的心得体会首先需要我们对所学的内容进行全面的理解和掌握。心得体会是在自己经历过程中的得失与收获的基础上总结出来的。写心得体会时,要结合理论知识和实践经验来加深自己的认识。以下是一些不同角度的心得体会范文,或许会给你带来一些新的思路。
数据挖掘心得体会总结篇一
数据挖掘是一门将大数据转化为有用信息的技术,在现代社会中发挥着越来越重要的作用。作为一名数据分析师,我在工作中不断学习和应用数据挖掘技术,并从中获得了许多心得体会。在这篇文章中,我将分享我在数据挖掘方面的经验和体验,并探讨数据挖掘对于企业和社会的意义。
首先,数据挖掘对于企业和组织来说至关重要。通过对大量数据的分析和挖掘,企业可以了解消费者的行为和偏好,从而制定更有针对性的营销策略。例如,在一个电商平台上,通过分析用户的购买记录和浏览行为,可以推荐给用户更符合他们兴趣的产品,从而提高销量和用户满意度。此外,数据挖掘还可以帮助企业识别潜在的商机和风险,从而及时做出相应的决策。因此,掌握数据挖掘技术对于企业来说是一项非常重要的竞争优势。
其次,数据挖掘也对于社会有着深远的影响。随着科技的进步和数据的爆炸性增长,社会变得越来越依赖数据挖掘来解决各种实际问题。例如,在医疗领域,通过分析大量的医疗数据,可以挖掘出患者的风险因素和患病概率,从而帮助医生制定更科学的诊疗方案。此外,在城市规划和交通管理方面,数据挖掘可以帮助政府和相关部门更好地了解市民的出行习惯和交通状况,从而制定更合理的交通规划和政策。因此,数据挖掘不仅可以提高生活质量,还可以推动社会的发展。
然而,数据挖掘也面临着一些挑战和问题。首先,数据安全与隐私问题成为了数据挖掘的一大难题。在进行数据挖掘过程中,我们需要处理大量的个人敏感信息,如用户的身份信息和消费记录。这就要求我们在数据挖掘过程中采取严格的安全措施,确保数据的安全和隐私不被泄露。其次,数据挖掘过程中的算法选择和参数设置也是一个复杂的问题。不同的算法和参数设置会得到不同的结果,我们需要根据具体问题的要求和数据的特点选择合适的算法和参数。此外,数据的质量也对数据挖掘的结果产生了重要影响,所以我们还需要进行数据清洗和预处理,确保数据的准确性和完整性。
通过我的学习和实践,我发现数据挖掘不仅是一门技术,更是一种思维方式。要成功地进行数据挖掘,我们需要具备良好的逻辑思维和分析能力。首先,我们需要对挖掘的问题有一个清晰的认识,并设定明确的目标。然后,我们需要收集和整理相关的数据,并进行数据探索和预处理。在选择和应用数据挖掘算法时,我们要根据具体的问题和数据的特点不断调整和优化。最后,我们需要对挖掘结果进行解释和应用,并进行持续的监控和改进。
综上所述,数据挖掘在企业和社会发展中具有重要作用。通过数据挖掘,我们可以更好地了解消费者的需求,优化产品和服务,提高效率和竞争力。在社会中,数据挖掘可以帮助我们解决许多实际问题,提高生活质量和城市管理水平。然而,数据挖掘也面临着诸多挑战和问题,需要我们不断学习和改进。作为一名数据分析师,我将继续努力学习和应用数据挖掘技术,为企业和社会的发展贡献自己的力量。
数据挖掘心得体会总结篇二
第一段:引言(150字)。
数据挖掘是当今信息时代的热门话题,随着大数据时代的到来,数据挖掘的应用也越来越广泛。作为一名数据分析师,我有幸参与了一个数据挖掘项目。在这个项目中,我学到了许多关于数据挖掘的知识,并且积累了宝贵的经验。在这篇文章中,我将分享我在这个项目中的心得体会。
第二段:数据收集与准备(250字)。
每个数据挖掘项目的第一步是数据收集与准备。这个阶段虽然看似简单,但却决定着后续分析的质量。数据的质量和完整性对于数据挖掘的结果至关重要。在我们的项目中,我们首先收集了相关的数据源,并进行了初步的数据清洗。我们发现,数据的质量经常不高,缺失值和异常值的存在使得数据处理变得困难。通过识别并处理这些问题,我们能够确保后续的挖掘结果更加准确可靠。
第三段:特征选择与降维(300字)。
接下来的阶段是特征选择与降维。在实际的数据挖掘项目中,我们常常会面临数据特征过多的问题。过多的特征不仅增加了计算的复杂性,也可能会引入一些无用的信息。因此,我们需要选择出最具有预测能力的特征子集。在我们的项目中,我们尝试了多种特征选择的方法,如相关系数分析和卡方检验。通过这些方法,我们成功地选择出了最相关的特征,并降低了维度,以提高模型训练的效率和准确性。
第四段:模型构建与评估(300字)。
在特征选择与降维完成后,我们进入了模型构建与评估阶段。在这个阶段,我们通过尝试不同的算法和模型来构建预测模型,并进行优化和调整。我们使用了常见的分类算法,如决策树、支持向量机和随机森林等。通过交叉验证和网格搜索等方法,我们找到了最佳的模型参数组合,并得到了令人满意的预测结果。在评估阶段,我们使用了准确率、召回率和F1值等指标来评估模型的性能,确保模型的稳定与可靠。
第五段:总结与展望(200字)。
通过这个数据挖掘项目,我获得了许多宝贵的经验和知识。首先,我学会了如何收集和准备数据,以确保数据质量和完整性。其次,我了解了特征选择和降维的方法,以选择出对模型预测最有用的特征。最后,我熟悉了不同的算法和模型,并学会了如何通过参数优化和调整来提高模型性能。然而,我也意识到数据挖掘是一个持续学习和改进的过程。在将来的项目中,我希望能够进一步提高自己的能力,尝试更多新的方法和技术,以提高数据挖掘的效果。
总结:在这个数据挖掘项目中,我积累了许多宝贵的经验和知识。通过数据收集与准备、特征选择与降维以及模型构建与评估等阶段的工作,我学会了如何高效地进行数据挖掘分析,并获得了令人满意的结果。然而,我也明白数据挖掘是一个不断学习和改进的过程,我将不断进一步提升自己的能力,以应对未来更复杂的数据挖掘项目。
数据挖掘心得体会总结篇三
数据挖掘是一种通过探索和分析海量数据,提取出有用的信息和知识的过程。在商务领域中,数据挖掘的应用已经越来越重要。通过深入学习和实践,我获得了一些关于商务数据挖掘的心得和体会。
首先,商务数据挖掘的背后是数据质量的保证。数据的质量直接影响到数据挖掘的效果。因此,在进行商务数据挖掘之前,我们应该首先对数据进行清洗和预处理。清洗数据是为了去除重复、缺失或错误的数据,从而提高数据的准确性和完整性。预处理数据则是对数据进行特征选择、规范化和归一化等处理,以便更好地应用数据挖掘算法。只有经过充分的数据清洗和预处理,我们才能得到准确和可靠的挖掘结果。
其次,合适的数据挖掘算法是取得好的效果的关键。商务数据挖掘应用广泛,包括关联规则挖掘、聚类分析、预测建模等。不同的问题需要采用不同的数据挖掘算法。例如,我们可以使用关联规则挖掘算法找到不同产品之间的关联性,以便设计更好的销售策略;聚类分析可以帮助我们将客户划分成不同的群体,以便精准营销;而预测建模可以帮助我们预测市场需求和销售额。选择合适的数据挖掘算法是非常重要的,它可以提高商务决策的准确性和效率。
另外,数据可视化在商务数据挖掘中的作用不可忽视。数据可视化可以将海量的数据以图表、图像和动画的形式展现出来,使得复杂的数据更加直观和易懂。通过数据可视化,我们可以更好地发现数据的规律和趋势,从而作出更明智的商务决策。例如,通过绘制产品销售地域分布图,我们可以更清晰地了解产品的市场覆盖情况;通过绘制用户购买路径图,我们可以更好地分析用户行为并优化用户体验。因此,在商务数据挖掘中,我们应该注重数据的可视化,将数据转化为有意义的图形化信息。
最后,数据挖掘的应用是一个持续不断的过程。商务领域的数据变化非常快速,市场需求的变化也很迅速。因此,我们不能仅仅停留在一次性的数据挖掘分析中,而应该持续地进行数据挖掘和分析工作。通过不断地监测和分析数据,我们可以及时发现和预测市场的变化和趋势,从而及时作出相应的调整和决策。数据挖掘的应用是一个循环的过程,需要不断地进行数据收集、清洗、预处理、模型构建、结果评估等环节,以实现商务数据挖掘的持续应用和价值。
综上所述,商务数据挖掘是一项非常重要的工作。通过数据挖掘,我们可以从海量的数据中提取出有用的信息和知识,帮助企业进行商务决策和市场预测。然而,商务数据挖掘也面临着挑战,如数据质量的保证、合适的算法的选择、数据可视化的应用和持续不断的工作。只有加强这些方面的工作,我们才能取得更好的商务数据挖掘效果,并为企业带来更大的商业价值。
数据挖掘心得体会总结篇四
第一段:引言(150字)。
在现代社会,由于生活方式的改变和环境的影响,糖尿病成为了一种常见的慢性疾病。糖尿病患者需要通过每天检测和管理血糖水平来控制病情。然而,对于患者来说,血糖水平的波动是一个复杂且难以预测的问题。然而,借助数据挖掘的技术,我们可以揭示血糖波动的规律,并帮助患者更好地管理自己的健康。
第二段:数据收集(200字)。
要进行数据挖掘分析血糖水平,首先我们需要收集大量的血糖数据。这些数据可以通过血糖监测仪器收集,包括测试时的血糖值、时间、饮食摄入和运动情况等。这些数据可以帮助我们了解不同因素对血糖水平的影响。同时,我们还可以通过问卷调查患者的生活方式和疾病史等信息,以便更全面地分析。
第三段:数据分析(300字)。
在收集到足够的数据后,我们可以通过数据挖掘的技术来分析这些数据。首先,我们可以使用聚类分析的方法将患者分成不同的组别,这些组别可以根据血糖水平和其他相关因素进行划分,帮助我们了解不同类型的糖尿病患者的特点。其次,我们可以使用关联规则挖掘的方法,找出不同因素之间的相关性。例如,我们可以分析饮食和血糖水平的关系,找出是否存在某些食物会导致血糖升高的规律。最后,我们可以使用时间序列分析的方法,预测未来的血糖水平,帮助患者制定合理的治疗计划。
第四段:结果与实践(300字)。
通过数据挖掘的技术,我们可以得到丰富的结果和启示。首先,我们可以帮助患者更好地管理血糖水平。通过对数据的分析,我们可以找出不同因素对血糖水平的影响程度,帮助患者明确需要控制的重点。其次,我们可以根据血糖水平的预测结果,为患者提供个性化的治疗建议。例如,如果预测到血糖会升高,患者可以提前调整饮食和运动,以避免出现血糖波动。最后,我们还可以通过数据挖掘的技术,发现一些新的治疗方法和干预措施,为糖尿病患者提供更好的治疗方案。
第五段:结论(250字)。
糖尿病是一种常见而复杂的慢性疾病,对患者的生活造成了很大的影响。通过数据挖掘的技术,我们可以更好地理解血糖波动的规律,帮助患者更好地管理自己的健康。然而,数据挖掘只是一种工具,其结果只是指导性的建议,患者还需要结合自身情况和医生的指导,制定合理的治疗方案。未来,随着技术的发展和数据的积累,数据挖掘在糖尿病治疗中的应用将会越来越广泛,帮助更多人掌握自己的健康。
数据挖掘心得体会总结篇五
数据挖掘教学是现代教育领域的一个热门话题,许多学生、教师和研究人员都对此产生了浓厚的兴趣。我作为一名参与数据挖掘教学的学生,通过这一学期的学习和实践,深刻体会到了数据挖掘教学的重要性和价值。在这篇文章中,我将分享我在数据挖掘教学中的心得体会,包括学习方法、实践应用和与其他学科的关系等方面。
首先,学习方法是数据挖掘教学成功的关键。在课堂上,老师为我们介绍了数据挖掘的基本概念、方法和技术,并通过案例分析和实例演示来帮助我们理解和运用这些知识。而在自主学习方面,我发现阅读相关教材和论文是非常必要的。数据挖掘是一个快速发展的领域,新的算法和技术层出不穷,我们需要不断地更新自己的知识。此外,参加相关的讨论和实践活动也对我们的学习有很大帮助。通过与同学和老师的交流,我们可以互相学习、分享经验,并共同解决问题。
其次,实践应用是数据挖掘教学的重要组成部分。在课程中,我们学习了数据预处理、特征选择、分类和聚类等数据挖掘的基本技术,并通过实验来运用这些技术进行数据分析。我发现,通过实践应用,我们可以更好地理解和掌握数据挖掘的方法和技术。在实验过程中,我们需要选择合适的数据集,并根据实际问题来设计和实现数据挖掘算法。实践过程中遇到的挑战和困难也帮助我们锻炼思维能力和问题解决能力。通过不断地实践和反思,我们逐渐提高了自己的数据挖掘能力。
此外,数据挖掘教学与其他学科的密切联系也给我留下了深刻的印象。数据挖掘是统计学、机器学习和计算机科学等多个领域的交叉学科,它继承了这些学科的方法和理论,并在实际应用中发展出了自己的技术和工具。在数据挖掘教学中,我们不仅学习了数据挖掘的基本理论和方法,还学习了相关的数学和统计知识,如概率论和线性代数。此外,数据挖掘还与商业和社会问题密切相关,例如市场营销、风险控制和个性化推荐等。因此,了解和运用其他学科的知识对我们的学习和实践都有很大的帮助。
最后,数据挖掘教学不仅帮助我们掌握了一门重要的技术,还培养了我们的创新能力和团队合作精神。数据挖掘是一个创新性的领域,要想在这个领域取得突破性的进展,充分发挥自己的创造力和团队合作精神是非常重要的。在课程中,我们经常要参与到小组项目和竞赛中,通过团队合作来解决实际问题。这不仅培养了我们的合作能力和沟通能力,还提高了我们的解决问题的能力。在这个过程中,我意识到数据挖掘教学不仅是一门学科的学习,更是一种能力的培养。
综上所述,通过这一学期的学习和实践,我深刻体会到了数据挖掘教学的重要性和价值。学习方法、实践应用、与其他学科的关系以及创新能力和团队合作精神都是数据挖掘教学中的重要内容。我相信,在今后的学习和工作中,我将继续努力,不断提高自己的数据挖掘能力,为推动科学研究和社会发展做出自己的贡献。
数据挖掘心得体会总结篇六
数据挖掘是用于发现隐藏于大量数据中的有用信息的过程。在现代商业中,数据挖掘已经成为了决策制定中不可或缺的工具。对于学习数据挖掘的人来说,写论文是一个很好的锻炼机会。本文将介绍我在撰写数据挖掘论文过程中得到的心得和体会。
一、数据收集和准备。
在进行数据挖掘和撰写论文之前,首先需要进行数据收集和准备。这个过程非常费时间和精力。它需要你花费大量的时间研究和了解你想要分析的数据,并且要确保其质量和可靠性。当你收集到充足的数据后,你需要对其进行清洗和加工,以确保它符合你的研究和分析要求。
二、寻找合适的算法。
对于不同的数据类型和研究目的,使用不同的算法是非常必要的。在进行数据分析前,我们需要先研究和了解有哪些算法可以使用,并确定哪个算法最适合你的数据和问题。此外,认真阅读一些经典的数据挖掘论文,了解如何使用不同类型的算法来处理和分析数据,对于指导你的研究和撰写论文有很大的帮助。
三、数据可视化。
数据可视化是通过图表、示意图和图像等方式将数据表达出来。它可以使得复杂的数据变得更加容易理解和使用。当你分析完你的数据后,你需要进行可视化操作,以帮助你更好地理解和展示数据。此外,数据可视化还能使你的论文更加引人注目,视觉效果更加优美。
四、语言表达。
语言表达能力在论文写作中是至关重要的。你需要清晰而有条理地表达你的研究思路和分析结果,并将其用通俗易懂的语言表现出来。此外,精确的描述和清晰的句子结构有助于阅读者理解你的思考过程。
五、多次修改和校对。
写作是一个不断完善和改进的过程。你需要对论文进行多次修改和校对,以确保你的研究思路和结果清晰明了,没有错别字和语法错误。此外,还需要注意引用来源的正确性和格式的一致性。
数据挖掘论文撰写是一个需要良好耐心和细心的工作。在整个过程中,我们需要持续学习和完善自己,才能写出高质量、有科学价值的论文。对于近期对数据挖掘领域有深入接触的读者来说,我们要虚心学习,勤奋钻研,不断提高自己的写作技巧。
数据挖掘心得体会总结篇七
也许有人会问我,“许向前,你好好一个租赁分公司的总工不当,跑到项目上当一名专业工程师,你后悔吗?”
首先是负责了贵安新区、贵安联通等项目安全文明施工标准化产品的设计和加工安装管理工作,绘了大量的效果图、组装式加工制作尺寸图等。其次是为分公司组建了喷塑烤漆房成套设备,在我的努力下,终于让租赁分公司结束了半年多来,生产安全防护产品一直靠委外喷塑烤漆的情形。再就是开启了分公司防护产品钢材等大规模材料在网上采购的新局面。并且,还指导和安排了分公司设备管理部起重机械的安全技术管理工作。
刚一调到这个项目,我总对经理等人说,“真的有点不好意思,把我调到这里来管机械,而这里并没有机械,只有几台挖掘机,我能否把工地临时用电也管起来?”领导给了我这个机会,我就边学边完成了我自己的第一个《临时用电施工组织设计》的编制。
这个项目是我今年工作得最充实的项目,应当说,在这里,我对塔吊、施工电梯很强的管理能力特别是现场抢修处理能力得到了充分的展现,为项目抢工期提供了有力的垂直运输保障。
8月14日刚来到中铁逸都项目时,公司陈思俊副总经理在抢工期动员会上,专门跟我讲了垂直运输机械的在保证工期方面的重要性。此项目12月28日就要交房,工期相当紧。陈总对我说,“你的责任不轻,一定要保证5台塔吊和9台施工电梯高效、安全使用,并做到故障少、故障能及时快速修复。”
在这工地我遇到了一个很棘手的问题:一是,此14台机械全部是从外面私人老板处租来的,关系十分复杂,此老板总拿项目欠他钱来作借口,故意拖延机械的故障维修或者大部分根本就不来修。二是,大部分设备的本质安全状况相当差,安全保护装置严重不齐全,带病作业现象严重。三是,操作司机半数以上没有操作证。四是,机械几乎每天都要加晚班,运转时间相当长,根本容不得你长时间停下来维修!
我是从以下几方面努力,保证了机械安全、高效使用,并安全顺利拆除退场完毕。
(一)亲自动手,强化塔吊和施工电梯的本质安全。
我认为,起重机械本质安全至关重要,它而且是最好操作,最易见成效的,它是机械安全的最有效的保障。机械不能做到本质安全,其它方面做得再好,花再多功夫,都难真正防止事故发生。因为其它方面主要是人的不安全行为,而人的不安全行为通常只能通过诸如安全教育、制度约束、技能培训、人选把关等方面来着手,但人始终是带有偶然性、不可预见性的。
首先,我亲自加强安全检查及故障排除。我每天都要巡视一下施工电梯,电梯再忙,我至少每天都要在笼子里仔细观察一下笼子的各个滚轮、压轮、齿轮、传动机构总成板的销轴有无松动退出——因为这样也不会耽误机械使用时间。然后,每隔三天,就要对每台电梯运行上去全面检查一遍。每周对每台塔吊检查一遍。在检查中,我发现了许多安全隐患,有的隐患是相当严重的。比如:48栋2单元电梯右笼,压轮都掉了一个,电梯居然还在运行,我发现立即叫停,为防止民工乱动,我还亲自把电源线拆除了,因为整个梯笼的几个小齿轮与齿条都因为压轮掉了而发生分离了!再继续使用,很可能随时发生梯笼坠落的严重事故!
其次,我自己动手,修复完善多台塔吊和电梯的安全保护装置。这些私人老板的观念是“只要能用就行,一切安全保护装置都是要不要无所谓。”大多数电梯、塔吊无总起动按钮(有的是被短接;而有的是根本就没有设置这个总起控制回路——这样的产品居然也“准入”了?)、无紧急停止按钮、无断相与相序保护继电器。(有的或许是上一个工地就坏了,他们就短接起来了使用,等于没有相序保护)——我一边修换一边跟工人讲解:相序保护器一定不能少,没有它,工地停电了后,用发电机发电时,常会有送电反相了的现象发生,而反相了,正常应当是无法起动总起的,但相充保护器被短接后,电梯就会反向运行,司机就会把向下当作向上开,而这是所有的上限位、下限位都会失效!电梯冲顶的危险就增加很多了!
自己维修机械与电气控制故障。
通知出租方送来后,我亲自提着很重的推动器爬到塔吊上修换;比如51栋电梯压轮坏了,我立即骑车去世纪城买来更换上去。
有一次,出租方故意把49栋塔吊电气控制线路交换接错,然后说“是plc电脑板坏了,起至少要10天才能修好”——这塔吊老板因为项目欠他一两个月租金,就出如此狠招。我毫不犹豫爬上塔吊亲自去检修(因为领导们都已经多次打电话通知出租方来修,却被故意拖延。)发现了有四根控制线是明显不符合常理的错误接法,我将其调换过来,塔吊无法回转的故障立即完全恢复正常了!后来,塔吊老板也承认了是他安排人故障把线路调换错的!
(二)充分利用微信群的曝光效果,配合罚款函等措施,把人员管理好。
比如,我检查出49栋塔吊钢丝绳断丝严重,打了两次电话还不见把钢丝绳买来,我就出了一个罚款警告函,签字盖项目章后,发给出租方,第二天终于来人换钢丝绳了。又如,电梯拆除的承包人,(同时又是司机承包者),在拆除51栋电梯时,不戴安全帽,不系安全带,并且把我亲自制作的极限开关笼顶紧急拉线故意扯下不用。我开一罚款警告单,发到微信群里,后来几台电梯拆除违章现象改正过来了。同样,高处作业吊篮老板,我也是开一个罚单在微信群里曝光警告他,后来的一两百台吊篮配重块保险绳全部穿好了。
20xx年是我工作了二十一年以来调动得最多的一年,从任租赁分公司总工一职转变到一个项目上的机械管理员,内心难免有些失落感,但不管怎么样,我只要做到问心无愧,尽职尽责做好我的工作,也就无愿无悔。
(三)全过程监管拆除现场,保证了14台起重机械安全顺利并快速拆除出场。
拆除14台起重机械,都是我全过程坚守在现场直至拆除装车出场完毕,没有一台漏过。在安全技术交底方面,我都要求现场签字并拍照。每台拆除,我都帮他们摘钩。这些私人老板,48栋二单元,拆除电梯大多数都只有两个人,我就无偿帮他们拆除附着,叫安质部另一个帮我在地面看管安全。因为当时的工期相当紧!项目总工为了排时间表,费尽了心血,每台施工电梯务必一天拆除完毕并装车拉走。否则就会延误后面的工序。
有一台电梯头天下午没拆除完,我就把电源线拆除下来,防止晚上有人乱开动电梯,因为已经拆除了一半了,这时没有无齿节、没有上限位等,如果哪个“不怕死的”晚上私自开动电梯,很容易发生冲顶坠落事故!因为他们还以为是30层高呢!哪知已经拆除到只有50多米高了!
每台塔吊拆除完后,裙楼楼板上剩下现一个“大洞”,我都亲自搬钢管、架板盖好,防止有人不小心掉下。拆除中,百分之九十以上的摘钩都是我无偿帮他们摘的。我为了什么?还不是为了让塔吊快点出场,吊篮好进行安装作业,因为工期太紧了。拆除中,遇到各种情况,我都快速及时处理,为拆除退场加快了速度。
总之,我就是从上述三方面着手,尽职尽责地管好了中铁逸都项目的14台起重机械,没有为项目紧张地抢工期拖后腿。并且,这些施工电梯的安装方案等备案资料都不齐全,有的连安装方案都没有,我都把这些资料补齐全了,并交给安质部长完成了施工电梯的备案登记工作。
在中铁逸都项目做得不足应当改进之处,一是,我没有对司机、指挥进行书面的安全教育,没有要求司机签字;二是公司要求的周检记录资料我没有及时填报;三是台班运转记录没有要求司机认真填写;四是施工电梯的防坠安全器台帐登记了,但是有几台已经过超过了检验期限,我没有强制要求出租方更换。
数据挖掘心得体会总结篇八
职责:
2、负责公司hadoop核心技术组件日常运维工作;。
3、负责公司大数据平台现场故障处理和排查工作;
4、研究大数据前沿技术,改进现有系统的服务和运维架构,提升系统可靠性和可运维性;
任职要求:
1、本科或以上学历,计算机、软件工程等相关专业,3年以上相关从业经验。
4、良好团队精神服务意识,沟通协调能力;
数据挖掘心得体会总结篇九
数据挖掘是一门涉及统计学、机器学习、数据库管理和数据可视化技术的跨学科领域。在我学习除了课堂上的理论学习之外,我还参加了实际的数据挖掘项目,并且有了一些心得体会。在这篇文章中,我将分享我对数据挖掘的几个关键方面的见解和经验。
首先,数据预处理是数据挖掘过程中非常重要的一步。在实际项目中,数据往往是杂乱无章和不完整的。因此,我们需要对数据进行清洗、转换和集成。在清洗过程中,我们要处理缺失值、异常值和重复值。转换过程中,我们可以通过数值化、归一化和标准化等技术将数据转换为计算机可以处理的形式。在集成过程中,我们要将来自不同源的数据进行整合。只有在数据预处理阶段完成得好,我们才能得到准确可信的结果。
其次,特征选择是数据挖掘的关键环节之一。在实际项目中,数据维度往往非常高,包含大量的特征。但并不是所有的特征都对最终的挖掘结果有贡献。因此,我们需要进行特征选择,选择最具有信息量和预测能力的特征。常用的特征选择方法有过滤式、包裹式和嵌入式等。在选择特征时,我们需要考虑特征的相关性、重要性和稀缺性等因素,以得到更精确和高效的结果。
然后,模型选择和评估是数据挖掘过程中的另一个重要环节。在实际项目中,我们可以选择多种模型来进行数据挖掘,如决策树、神经网络、支持向量机等。但不同的模型有不同的优缺点,适用于不同的挖掘任务。因此,我们需要根据具体情况选择最合适的模型。在模型评估中,我们可以使用交叉验证和混淆矩阵等技术来评估模型的性能。只有选择合适的模型并评估其性能,我们才能得到有效的挖掘结果。
此外,可视化和解释是数据挖掘过程中的重要组成部分。在实际项目中,我们需要将复杂的数据挖掘结果以可视化的方式展示出来,以便更好地理解和解释。可视化技术可以将抽象的数据转化为可视化的图表、图形和图像,使人们更容易理解和分析数据。同时,我们还需要解释数据挖掘的结果,向他人解释模型的原理和背后的逻辑。只有通过可视化和解释,我们才能将数据挖掘的成果有效地传达给其他人。
最后,实践是最好的学习方法。在我的实际项目中,我发现只有亲身参与实践,才能真正理解数据挖掘的各个环节和技术。通过实践,我才意识到理论学习只是为了更好地应用于实际项目中。实践过程中,我遇到了各种各样的问题和挑战,但通过不断探索和实践,我迎难而上并从中学到了很多。
总之,数据挖掘是一门复杂而有趣的学科。通过实践和学习,我逐渐掌握了数据预处理、特征选择、模型选择和评估、可视化和解释等关键技术。这些技术在实际项目中起到了重要的作用。我相信,随着数据挖掘领域的快速发展,我将能够在未来的项目中运用这些技术,为解决现实问题做出更大的贡献。
数据挖掘心得体会总结篇十
随着现代生活节奏的加快和饮食结构的改变,糖尿病的发病率逐年增加。为了掌握血糖的变化规律,我使用了数据挖掘技术来分析和监测自己的血糖水平。通过挖掘数据,我得到了一些有价值的体会,让我更好地控制糖尿病,提高生活质量。
第二段:数据采集与分析。
在我进行数据挖掘之前,我首先购买了一款血糖仪,并在每天固定时间测量自己的血糖水平。我录入了测量结果,并加入了一些其他的因素,如进食和运动情况。然后,我使用数据挖掘工具对数据进行分析,找出血糖浓度与其他变量之间的关系。通过数据挖掘,我发现餐后1小时的血糖浓度与进食的饮食类型和量息息相关,同时运动对血糖的调节也有很大的影响。
第三段:血糖控制的策略。
基于我对数据挖掘结果的分析,我制定了一些针对血糖控制的策略。首先,我调整了自己的进食结构,在餐后1小时之内尽量选择低GI(血糖指数)食物,以减缓血糖上升的速度。其次,我增加了运动的频率和强度,通过锻炼可以帮助身体更好地利用血糖。此外,我还注意照顾好心理健康,保持良好的情绪状态,因为压力和焦虑也会影响血糖的波动。
第四段:效果评估与调整。
经过一段时间的实践,我再次进行了数据挖掘分析,评估了我的血糖控制效果。结果显示,我的血糖水平明显稳定,没有出现过高或过低的情况。尤其是在餐后1小时的血糖控制上,我取得了显著的进步。然而,我也发现一些仍然需要改进的地方,比如在餐前血糖控制上仍然有一些波动,这使我认识到需要更加严格执行控制策略并加以调整。
第五段:总结与展望。
通过数据挖掘技术的运用,我成功地掌握了自己的血糖变化规律,制定了相应的血糖控制策略,并取得了一定的效果。数据挖掘为我提供了更深入的认识和理解,帮助我做出有针对性的调整。未来,我将继续采用数据挖掘技术,不断优化血糖控制策略,并鼓励更多的糖尿病患者使用这种方法,以便更好地管理糖尿病,提高生活质量。
以上是一篇关于“数据挖掘血糖心得体会”的五段式文章,通过介绍数据挖掘技术在血糖控制中的应用,总结了个人的体会和心得,并展望了未来的发展方向。数据挖掘的使用提供了更准确的血糖控制策略,并帮助我更好地控制糖尿病,改善生活质量。
数据挖掘心得体会总结篇十一
第一段:引言(引出主题)。
数据挖掘作为一门前沿的科学技术,在当今信息爆炸的时代扮演着至关重要的角色。数据挖掘旨在发现隐藏在大规模数据背后的模式和知识,为未来的发展和决策提供支持。作为一名从业者,我有幸在大学期间接触到数据挖掘并有机会参与相关课程的学习。通过一系列的实践和理论的学习,我积累了一些关于数据挖掘教学的心得体会。
第二段:兴趣引导和实践经验。
在数据挖掘的教学中,兴趣引导是极其重要的。数据挖掘本身是一门较为抽象的学科,但却与实际生活息息相关。通过丰富有趣的案例和实践活动,能够引起学生的兴趣,增加他们对数据挖掘的了解和热情。在我的教学实践中,我通过带领学生分析真实世界的数据集,挖掘出其中的规律和趋势,并从中提炼有意义的信息。学生通过亲身参与实践,深入感受到数据挖掘的实用性和魅力,激发他们对数据挖掘的学习兴趣。
第三段:理论与实际应用的结合。
在教学过程中,我始终坚持将理论知识与实际应用相结合,使学生不仅掌握数据挖掘的基本理念和方法,而且能够应用这些理论知识解决实际问题。我常常引导学生通过编程工具进行实际操作,并带领他们分析不同领域的真实案例。例如,通过分析市场营销数据,学生可以了解如何利用数据挖掘技术提升企业的销售业绩;通过分析医疗健康数据,学生可以探索数据挖掘在疾病预测和诊断中的应用潜力。这种理论与实际应用的结合不仅提高了学生的学习效果,而且让他们在实践中体会到数据挖掘的实际价值。
第四段:团队合作与项目驱动。
数据挖掘是一项复杂而繁重的任务,往往需要多个领域的专家共同合作才能达成目标。在教学中,我鼓励学生形成团队合作,通过项目驱动来进行学习。我会设计一些多人参与的课程项目,要求学生在小组中合作完成。通过团队合作,学生不仅能够互相学习和协作,还可以更好地培养沟通和领导能力。同时,项目驱动能够使学生在实践中应用所学知识,提高解决问题的能力和创新思维。
第五段:终身学习和实践。
数据挖掘作为一门科学技术,发展迅速而变幻莫测。在教学中,我鼓励学生养成终身学习和实践的习惯。我会引导学生跟踪最新的研究成果和技术进展,并鼓励他们主动利用开放的数据集和开源工具进行实践。我也经常向学生分享一些实践心得和学习资源,帮助他们进一步提高自己的数据挖掘能力。我相信,终身学习和实践是持续发展的关键,只有保持学习和实践的状态,才能不断适应和引领数据挖掘的新潮流。
结尾:(总结主要观点)。
在数据挖掘的教学过程中,兴趣引导、理论与实际应用的结合、团队合作与项目驱动、终身学习和实践等方面都扮演着重要的角色。通过课程设计和教学方法的合理搭配,我相信能够培养出更多对数据挖掘感兴趣、具有实践能力的学生,为数据挖掘的发展和未来的决策提供有力的支持。
数据挖掘心得体会总结篇十二
第一段:引言(字数:200)。
在当今信息化时代,数据积累得越来越快,各大企业、机构以及个人都在单独的数据池里蓄积着海量的数据,通过数据挖掘技术分析数据,发现其内在的规律和价值,已经变得非常重要。作为一名在此领域做了数年的数据挖掘工作者,我深刻感受到了数据挖掘的真正意义,也积累了一些心得体会。在这篇文章中,我将要分享我的心得体会,希望能帮助更多的从事数据挖掘相关工作的同行们。
数据自身是没有价值的,它们变得有价值是因为被处理成了有用的信息。而数据挖掘,就是一种能够从海量数据中发现具有价值的信息,以及建立有用模型的技术。站在技术的角度上,数据挖掘并不是一个简单的工作,它需要将数据处理、数据清洗、特征选择、模型建立等整个过程串联起来,建立数据挖掘分析的流程,不断优化算法,加深对数据的理解,找出更多更准确的规律和价值。数据挖掘的一个重要目的就是在这海量的数据中挖掘出一些对业务有用的结论,或者是预测未来的发展趋势,这对于各个行业的决策层来说,是至关重要的。
如果说数据挖掘是一种手术,那么数据挖掘的过程就相当于一个病人进入外科手术室的流程。针对不同业务和数据类型,数据挖掘的流程也会略有不同。整个过程大致包括了数据采集、数据预处理、建立模型、验证和评估这几个步骤。在数据采集这个步骤中,就需要按照业务需求对需要的数据进行采集,把数据从各个数据源中汇总整理好。在数据预处理时,要把数据中存在的错误值、缺失值、异常值等传统数据分析方法所不能解决的问题一一处理好。在建立模型时,要考虑到不同的特征对模型的贡献度,采用合理的算法建立模型,同时注意模型的解释性和准确性。在模型验证和评价过程中,要考虑到模型的有效性和鲁棒性,查看实际表现是否满足业务需求。
第四段:数据挖掘的优势与劣势(字数:300)。
在数据呈指数级增长的时代,数据挖掘被广泛运用到各个行业和领域中。从优势方面来说,数据挖掘的成果能够更好地支持决策,加强商业洞察力,从而更加精准地掌握市场和竞争对手的动态,更好地发现新的商业机会。但是在进行数据挖掘的时候,也存在一些缺陷。比如,作为一种分析和预测工具,数据挖掘往往只是单方面的定量分析,笼统的将所有数据都看成了值。它不能像人类思维那样对数据背后深层的内涵进行全面掌握,这也让数据挖掘出现了批判性分析缺乏的问题。
第五段:总结(字数:250)。
总体来说,数据挖掘的技术也不是万能的。但是,作为一种特定领域的技术,它已经为许多行业做出了巨大的贡献。我在多年的工作中也积累了一些心得体会。在日常工作中,我们需要深入了解业务的背景,把握业务需求的背景,并结合数据挖掘工具的特点采用合适的算法和工具处理数据。在处理数据的时候,优先考虑数据的效度和可靠性。在建立模型的过程中,要把握好模型的可行性,考虑到模型的应用难度和解释性。最重要的是,在实际操作过程中,我们需要不断拓展自己的知识体系,学习更新的算法,了解各种领域的新型应用与趋势,仅仅只有这样我们才能更好地运用数据挖掘的技术探索更多的可能性。
数据挖掘心得体会总结篇十三
数据挖掘是指通过对大规模数据进行分析,挖掘隐藏在其中的有用信息和模式的过程。在当今信息技术飞速发展的时代,大量的数据产生和积累已经成为常态,而数据挖掘算法就是处理这些海量数据的有力工具。通过学习和实践,我对数据挖掘算法有了一些深入的体会和心得,下面我将分五个方面进行阐述。
首先,数据清洗是数据挖掘的基础。在实际应用中,经常会遇到数据存在缺失、异常等问题,这些问题会直接影响到数据的准确性和可靠性。因此,在进行数据挖掘之前,我们必须对数据进行清洗。数据清洗包括去除重复数据、填补缺失值和处理异常值等。这个过程不仅需要严谨的操作,还需要充分的领域知识来辅助判断。只有经过数据清洗处理的数据,我们才能更好地进行模型训练和分析。
其次,数据预处理对模型性能有重要影响。在进行数据挖掘时,往往需要对数据进行预处理,包括特征选择、特征变换、特征抽取等。特征选择是指从原始数据中选择最相关的特征,剔除无关和冗余的特征,以提高模型的训练效果和泛化能力。特征变换是指对数据进行线性或非线性的变换,以去除数据的噪声和非线性关系。特征抽取是指将高维数据转换为低维特征空间,以降低计算复杂度和提高计算效率。合理的数据预处理能够使得模型更准确地预测和识别出隐藏在数据中的模式和规律。
再次,选择适当的算法是关键。数据挖掘算法种类繁多,包括聚类、分类、关联规则、时序模型等。每种算法都有其适用的场景和限制。例如,当我们希望将数据划分成不同的群组时,可以选择聚类算法;当我们需要对数据进行分类时,可以选择分类算法。选择适当的算法可以更好地满足我们的需求,提高模型的准确率和稳定性。在选择算法时,我们不仅需要了解算法的原理和特点,还需要根据实际应用场景进行合理的抉择。
再次,模型评估和优化是不可忽视的环节。在进行数据挖掘算法建模的过程中,我们需要对模型进行评估和优化。模型评估是指通过一系列的评估指标来评价模型的预测能力和稳定性。常用的评估指标包括准确率、召回率、F1-score等。在评估的基础上,我们可以根据模型的问题和需求,对模型进行优化。优化的方法包括调参、改进算法和优化特征等。模型评估和优化是一个迭代的过程,通过不断地调整和改进,我们可以得到更好的模型和预测结果。
最后,数据挖掘算法的应用不仅仅局限于科研领域,还广泛应用于生活和商业等各个领域。例如,电商平台可以通过数据挖掘算法分析用户的购买行为和偏好,从而给予他们个性化的推荐;医疗健康行业可以通过数据挖掘算法挖掘疾病和基因之间的关联,为医生提供更精准的治疗策略。数据挖掘算法的应用有着巨大的潜力和机遇,我们需要不断地学习和研究,以跟上数据时代的步伐。
综上所述,数据挖掘算法是处理海量数据的重要工具,但同时也是一个复杂而庞大的领域。通过实践和学习,我意识到数据清洗、数据预处理、选择适当的算法、模型评估和优化都是数据挖掘工作中不可或缺的环节。只有在不断地实践和思考中,我们才能更好地理解和运用这些算法,为我们的工作和生活带来更多的价值和效益。
数据挖掘心得体会总结篇十四
随着信息技术的发展,数据在我们的生活中变得越发重要。如何从大量的数据中提取有用的信息,已经成为当今社会中一个非常热门的话题。数据挖掘算法作为一种重要的技术手段,为我们解决了这个问题。在探索数据挖掘算法的过程中,我总结出了以下几点心得体会。
首先,选择合适的算法非常重要。数据挖掘算法有很多种类,如分类、聚类、关联规则等。在实际应用中,我们需要根据具体的任务和数据特点来选择合适的算法。例如,当我们需要将数据按照某种规则划分为不同的类别时,我们可以选择分类算法,如决策树、SVM等。而当我们需要将数据按照相似性进行分组时,我们可以选择聚类算法,如K-means、DBSCAN等。因此,了解每种算法的优缺点,并根据任务需求进行选择,对于数据挖掘的成功非常关键。
其次,在数据预处理时要注意数据的质量。数据预处理是数据挖掘流程中一个非常重要的步骤。如果原始数据存在错误或者缺失,那么使用任何算法进行数据挖掘都很难得到准确和有效的结果。因此,在进行数据挖掘之前,务必要对数据进行清洗和处理。清洗数据可以通过删除重复数据、填充缺失值、处理异常值等方式进行。此外,数据特征的选择和重要性排序也是一个重要的问题。通过对数据特征的分析,可以排除掉对结果没有影响的无用特征,从而提高数据挖掘的效率和准确性。
再次,参数的调整对算法性能有着重要影响。在复杂的数据挖掘算法中,往往有一些参数需要设置。这些参数直接影响算法的性能和结果。因此,对于不同的数据集和具体的问题,我们需要谨慎地选择和调整参数。最常用的方法是通过试验和比较不同参数设置下的结果,找到最优的参数组合。另外,还可以使用交叉验证等技术来评估算法的性能,并进行参数调整。通过合适地调整参数,我们可以使算法达到最佳的性能。
最后,挖掘结果的解释和应用是数据挖掘中的重要环节。数据挖掘不仅仅是提取有用的信息,更重要的是对挖掘结果的解释和应用。数据挖掘算法得到的结果往往是数值、图表或关联规则等形式,这些结果对于非专业人士来说往往难以理解。因此,我们需要将结果以清晰简洁的方式进行解释,让非专业人士也能够理解。另外,挖掘结果的应用也是非常重要的。数据挖掘只是一个工具,最终要解决的问题是如何将挖掘结果应用于实际情况中,从而对决策和业务产生影响。因此,在数据挖掘过程中,要时刻考虑结果的应用方法,并与相关人员进行有效的沟通合作。
综上所述,数据挖掘算法在现代社会中扮演着至关重要的角色。选择合适的算法、进行良好的数据预处理、调整参数、解释和应用挖掘结果是数据挖掘流程中的关键步骤。只有在这些步骤上下功夫,我们才能从大量的数据中挖掘出有用的信息,并为决策和业务提供有力的支持。
数据挖掘心得体会总结篇十五
20xx年我项目部认真贯彻落实实施公司各种要求,通过广大干部职工的共同努力,顺利的完成了矿方给项目部所下达各项任务,在和矿派管理人员双重安全管理模式下,不但最大限度地稳定了队伍,而且也很好地磨合了队伍锤炼了队伍,生产经营也取得了重大的突破,20xx年产值突破了3.5亿元,项目部现在目前有1200多名职工,各项工作都取得了可人的成绩。
完成掘进进尺6500余米,巷道挑顶2500米,6个风桥,起底6500米,硬化铺底3500米,巷道补强4500余米,巷道注浆施工:3500余米,还完成了2308、4307、4304综放工程面附属工程,水仓、绞车硐室50余个,完成零工约11万个,还有矿方安排的其他紧急零星工程等。我积极配合领导与矿方各个部室协调沟通,项目部没有出现窝工、返工的现象。
今年以来,我项目部管理人员为更好的为队组服务,进行组织机构创新,对项目部进行分组管理,共分为生产运输组、技术组、安全通风组、后勤组、机电设备组、劳资财务组共六个组。队组针对需要解决的问题,进行对口解决。使我项目部的工作效率大大提高。
(二)安全生产双丰收:深入开展安全活动,强化人本管理,加大教育培训力度,提高全员素质,以员工素质保安全(以素保安);突出一通三防、防治水等安全重点,狠抓现场管理,落实安全生产责任制,以责任落实保安全(以责保安);三违教育管理:经过一段时间对职工的培训教育后,职工安全意识有了很大进步,从3月份开始我项目部“三违”次数有了明显的下降趋势,由原来的每月40余起,降至现在的每月20余起,同比下降了50%。特别是普掘队组,上半年发生的几起磕手碰脚事故都是由于违章引起的,自5月份开始,“三违”人次由原来的每月10余人降至现在的每月6人次左右,有的队组更是实现了月度零违章。
本年度项目部共查隐患1142条,其中严重隐患23条,进入“安全月”后,各队组基本实现了月度无二次下卡,无严重隐患。
全年实现了重伤以上事故为零的指标,但在施工作业过程中,部分队组由于仍然有不重视的思想,还是发生了6起磕手碰脚的小事故,相比去年下降了2起。
通过加强安全管理体系和制度建设,实现依法保安;加强安全文化建设,营造了浓厚的安全氛围,促进了项目部安全形势的持续稳定发展。实现了安全生产双丰收。
(三)机电管理上台阶:立足安全规程,制定各种制度,强化机电安全质量标准化。结合项目部实际情况制定了《项目部机电安全质量标准化及考评办法》;《项目部机电管理制度》;并制定了专业考核标准,对井下出现的电气失爆,电缆吊挂及保护情况,加大了维护措施。其它问题也得到了相应的整改,电缆悬挂明显整齐,脏,乱,差的现象基本得到控制。同时为了加强制度化和规范化的管理,特别制定了机电工岗位责任制。
加强现场机电设备的管理和检修维护,充分发挥机械设备的优势和效能,减少机电事故,提高全体机电人员的管理和操作水平。利用“春检”和“雨季三防”,定期对井上下高低压线路巡视检修。对项目部各队组供电系统进行隐患排查处理对项目部地面线路进行了两次整改。强化每月机电检查,加强平时排查。加强机电工培训工作。本年度与矿建机电经理联系组织各队机电工到矿建中心和江苏八达机械厂家培训3次,培训人数达到35人。在项目部联系风机切换开关技术人员前来我项目部机电实验室现场讲课培训,对岗位司机和看护风机人员进行理论和实践上的培训。每月抽空在项目部开机电例会一次。20xx年,项目部共组织各队组机电检查15次,共查出并整改问题215条。设备失爆率有了很大程度下降,较大程度地扼制了安全事故的发生。
(四)科技创新新征程:根据矿建公司对科技创新工作的安排,项目部也对科技创新工作进行了针对性的布臵,并成立了科技创新领导组,设定了20xx年上报5项,力争8项的创新目标。通过努力,项目部本年度上报科技创新项目8项,五小成果13项。在矿建公司组织的科技创新座谈会,项目部有4项科技创新成果荣登矿建公司的《科技创新专刊》。
(五)后勤管理有保障:今年以来,后勤系统紧紧围绕矿建中心总体工作目标,实出环境整治、供热、房改工作等重点管理,使员工的生活质量得到了明显提高。
狠抓环境卫生,今年共清理垃圾500吨,保证了项目部内的整洁,全年无传染病、无食物中毒事件。强化住房管理工作,住房是我项目部的一件大事,关系到每一位职工的切身利益,修建了活动室,配备了台球案、乒乓球案、双杠、象棋、跳棋、哑铃等,活动器材丰富了职工的业余生活,扩建澡塘100多平方,并给女职工修建澡塘保证每一位职工在班后能及时洗上热水澡,维修职工住宿200多平方,保证职工的住宿问题,并派有专人负责。在食堂和澡塘、供热管理上,20xx年我们以服务职工为宗旨,为职工担供最优质的洗浴、住宿、就餐服务,并完成了各类检查工作组的接待任务。
(六)加强职工培训,注重人才培养:
1、特殊工种培训:
(1)、安管初训人员72人,复训16人,再培训14人;
(2)、班组长初训52人,复训11人;
(3)、井下电工初训84人,复训24人;
(4)、掘进机司机初训30余人,复训2人;
(5)、探放水共初训23人;
2、一般工种培训:
(1)、支护工初训650人,再训500人;
(2)、掘进工初训100人;
(3)、刮板司机初训440人,再训150人;
(4)、三机司机初训400人;
(5)、小绞车司机初训150人;
(6)、水泵司机初训200人;
(7)、挖掘机司机培训50余人;
3、在矿职教部培训安检工40余人,瓦斯检查工20人,创伤自救人员30人,探放水工39人。
4、共计初训:2380人次,复训:717人次;
我项目部通过组织结构创新、管理制度创新、等方方面面进行科学实践,让创新的理念、创新的方法、创新的氛围深入人心,为企业的发展进行有益的尝试。
今年以来,项目部人员不断增加,管理难度也越来越大,项目部领导班子就开始重视制度建设,不断地建立健全各项规章制度,把队伍稳定做为制定制度的出发点,把锻炼队伍做为提升管理的根本点,不是全盘否定,而是日臻完善,我们把好的制度继续执行下去,把不好的制度进行重新完善,最大限度地照顾到职工的情绪,在短短的三个月,我们就建立健全的各项规章制度,先后制定和完善了各岗位责任制,并制定和修改了《安全质量标准化考核办法》、《月度生产绩效考核管理制度》《项目部管理人员工资分配方案》、《运输及顶板考核办法》、《管理人员请销假制度》、《xxxxx项目部节能降耗方案》等,迅速地与矿建公司和xxxxx公司各项管理制度接轨,也使管理走上了健康发展的轨道。
您可能关注的文档
- 采访作家心得体会实用(模板9篇)
- 2023年政协民主心得体会(模板14篇)
- 入团心得体会文案怎么写(通用18篇)
- 演讲色彩心得体会简短(优质8篇)
- 最新高等学生心得体会及收获(实用11篇)
- 最新比赛跳绳心得体会范本(实用15篇)
- 团建联谊心得体会及收获(汇总8篇)
- 寒假美食心得体会报告(精选10篇)
- 2023年寒假美食心得体会总结(通用9篇)
- 最新比赛跳绳心得体会精选(汇总14篇)
- 探索平面设计师工作总结的重要性(汇总14篇)
- 平面设计师工作总结体会与收获大全(20篇)
- 平面设计师工作总结的实用指南(热门18篇)
- 免费个人简历电子版模板(优秀12篇)
- 个人简历电子版免费模板推荐(通用20篇)
- 免费个人简历电子版制作教程(模板17篇)
- 学校贫困补助申请书(通用23篇)
- 学校贫困补助申请书的重要性范文(19篇)
- 学校贫困补助申请书的核心要点(专业16篇)
- 学校贫困补助申请书的申请流程(热门18篇)
- 法制教育讲座心得体会大全(17篇)
- 教育工作者的超市工作总结与计划(模板18篇)
- 教学秘书的工作总结案例(专业13篇)
- 教师的超市工作总结与计划(精选18篇)
- 单位趣味运动会总结(模板21篇)
- 礼品店创业计划书的重要性(实用16篇)
- 消防队月度工作总结报告(热门18篇)
- 工艺技术员工作总结(专业18篇)
- 大学学生会秘书处工作总结(模板22篇)
- 医院科秘书工作总结(专业14篇)
相关文档
-
2023年
数 据 挖 掘 论文论文(模板17篇)15下载数 701阅读数 -
2023年
数 据 挖 掘 心得体会总结(汇总15篇)30下载数 377阅读数 -
数 据 挖 掘 心得体会报告(优秀13篇)31下载数 379阅读数 -
数 据 挖 掘 心得体会总结(实用15篇)28下载数 719阅读数 -
数 据 挖 掘 心得体会报告(汇总8篇)47下载数 826阅读数 -
专利
数 据 挖 掘 的论文汇总(精选16篇)33下载数 211阅读数 -
数 据 挖 掘 技术的心得体会(实用14篇)20下载数 858阅读数