- 时间:2023-11-22 06:48:57
- 小编:zxfb
- 文件格式 DOC
在我们的学习和工作生活中扮演着重要的角色。要善于运用具体的实例和案例,使总结更加生动有趣,并能够引起读者的共鸣。通过阅读总结范文,我们能够了解到一些流行的总结写作技巧。
表面积的变化教学设计篇一
课前思考1:
课堂上的活动要在学生动手操作的基础上及时进行讨论和交流。教师在课堂上要有较强的组织、调控能力,不能让操作活动流于形式。
第一环节中要将两个1立方厘米的正方体拼成一个长方体,让学生感受到不管怎么拼,拼成的长方体的体积是原来两个正方体体积和,拼成的长方体的表面积比原来两个正方体表面积的和少了2个面的面积。
第二环节中组织学生将3个、4个、5个------这样的正方体拼成一个长方体,研究表面积的变化,发现其中的规律,规律有多种表述方式,只要符合题目意思就可以。课堂上要多给学生表达的机会,教师还要及时给予鼓励性评价。
第三环节中将两个相同的长方体拼成大长方体,引导学生发现表面积的变化。
“拼拼说说”栏目里变化了拼法,不但把正方体拼成一行,还拼成两行。教学中要仔细地体会拼的活动和研究教材里的示意图。最后为10盒火柴设计一个最节省的包装方案,是应用前面拼正方体或长方体的经验:重叠的面越大,表面积减少越多;两两相拼的次数多,减少的面积也多。这两条经验要灵活地、综合地应用,才能得到理想的方案。这对空间观念和思维能力是很好的锻炼。
课前思考2:
长正方体表面积和体积的实际问题在生活中有很多类型,在前面学习中我们将能想到的各种类型都通过习题进行了巩固训练,但在前面的学习中,都是一题一个类型,没有像今天教材上这样,将几个相关知识点通过一系列的数学活动来揭示,教材上这样的安排,对发展学生的思维是有益的。
在课堂教学中,要引导学生先通过直观操作,建立表象,再逐步提升,发现蕴涵着的规律,逐步发展学生的抽象思维。
对长方体的包装,我想不能仅仅限于通过实际操作,发现火柴盒最省的包装方法,还应进一步提升,也要通过学习活动,引导学生掌握长方体的最省的包装方法,这也有一定规律的,这个规律也要引导学生掌握,可能今天课堂上余下的时间并不多了,可利用自习课继续研究,一定要研究透彻!不能仅仅停留在操作层面!
课后反思1:
本课时的内容需要学生在动手操作中发现规律,所以课前我就布置学生要准备好学具。整节课上得比较顺利,特别是在研究若干个正方体拼成一个长方体,表面积和体积会发生什么变化时,学生们学习热情高涨,在动手操作后研究出了其中的变化规律,而且两个班中都有几位学生用自己的语言总结出了规律。第二环节中组织学生研究两个相同的长方体拼成三个不同的长方体时,由于学具中没有相应的长方体,所以学生无法操作,我在课前也疏忽了这一点,否则可以让学生准备两个完全相同的长方体纸盒来代替学具进行操作。跳过操作这一环节,我直接让学生通过计算来验证自己的猜想。
本课中因为有了多次的操作和计算验证,学生们都能很好地理解重叠的面积越大,表面积减少越多;两两相拼的次数越多,减少的面积也越多。
课后反思2:
由于这课内容比较多,所以在课前要求学生提前预习。课堂教学中,先使用小正方体,实际操作(将小正方体拼搭成一行),再计算来验证课前预习的猜测,并将发现的规律上升到一定的高度。再将这个内容适当拓展:将6个小正方体拼搭成几行几列的状况,计算表面积减少了多少?使学生体会到这时减少的面更多了,只要找到拼搭的拼缝是几条,那么减少的面只要再乘2即可。
再组织学生观察两个同样的长方体的拼搭,先估计哪种拼搭后的大长方体的表面积最大?哪种最小?你是怎样想的?并计算出三种不同拼搭后的大长方体的表面积验证刚才的猜测。再将这个内容拓展:如果有4块这样的长方体,那么怎样拼搭表面积最小?怎样拼搭表面积最大?要求学生画出拼搭后的示意图,并计算拼搭后的大长方体的表面积,组织学生板演,再比较拼搭后的表面积的分别减少了哪几面?最后得出拼搭后表面积最小的拼搭方法。追问:现在只有4块,大家在计算时使感觉很麻烦,如果有10块,也让你找到表面积最小的拼搭方法,你感觉怎样?其实,这样的问题有更巧妙的解决办法,想学吗?于是组织学生学习很快算最小表面积的方法:(1)计算4块小长方体体积;(2)将体积数分解质因数,使拼搭后的长、宽、高三个数据越接近,它的体积就越小。
列成算式:5×4×3×4:
(1)5×(4×2)×(3×2)=5×8×6。
(2)(5×2)×(4×2)×3=10×8×3。
(3)5×4×(3×4)=5×4×12。
(4)(5×4)×4×3=20×4×3。
在这些方案中,第一种方案中的长、宽、高数据最接近,所以第一种拼搭方法表面积最小!反之拼搭后的表面积最大!
掌握了这个方法,那么10包火柴盒包装后哪种表面积最省?学生就不会用列举的方法,既麻烦又不一定找到的答案是最省的方案!
课后反思3:
本节课,在体验规律中,每次操作完学具后,安排了小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两盒长方体形状的巧克力包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
本节课同学们学习兴趣浓厚,积极主动,课堂上学生通过动手操作,认真观察,独立思考,互相讨论,合作交流,发现了知识,领悟了知识,品尝到了成功的喜悦。
表面积的变化教学设计篇二
3.会正确计算圆柱的侧面积和表面积。
教学重点。
理解求表面积、侧面积的计算方法,并能正确进行计算。
教学难点。
能灵活运用表面积、侧面积的有关知识解决实际问题。
教学过程。
一、复习准备。
(一)口答下列各题(只列式不计算)。
1.圆的半径是5厘米,周长是多少?面积是多少?
2.圆的直径是3分米,周长是多少?面积是多少?
(二)长方形的面积计算公式是什么?
(三)回忆圆柱体的特征。
二、探究新知。
1.学生讨论:圆柱的侧面展开图(是长方形)的长、宽和圆柱底面周长、高的关系。
2.小结:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高。
(二)教学例1.
1.出示例1。
例1.一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)。
2.学生独立解答。
教师板书:3.140.51.8。
=1.75l.8。
2.83(平方米)。
答:它的侧面积约是2.83平方米。
3.反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积。
1.教师说明:圆柱的侧面积加上两个底面积就是圆柱的表面积。
圆柱的表面积是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。
(四)教学例2.
1.出示例2。
例2.一个圆柱的高是15厘米,底面半径是5厘米,它的.表面积是多少?
2.学生独立解答。
侧面积:23.14515=471(平方厘米)。
底面积:3.14=78.5(平方厘米)。
表面积:471+78.52=628(平方厘米)。
答:它的表面积是628平方厘米。
3.反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积。
(五)教学例3.
1.出示例3。
例3.一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)。
2.教师提问:解答这道题应注意什么?
这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。
3.学生解答,教师板书。
水桶的侧面积:3.142024=1507.2(平方厘米)。
水桶的底面积:3.14。
=3.14。
=3.14100。
=314(平方厘米)。
需要铁皮:1507.2+314=1821.21900(平方厘米)。
答:做这个水桶要用1900平方厘米。
4.教师说明:这里不能用四舍五入法取近似值。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。
5.四舍五入法与进一法有什么不同。
(1)四舍五入法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。
(2)进一法看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。
三、课堂小结。
归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。
四、巩固练习。
(一)求出下面各圆柱的侧面积。
1.底面周长是1.6米,高是0.7米。
2.底面半径是3.2分米,高是5分米。
(二)计算下面各圆柱的表面积。(单位:厘米)。
(三)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)。
五、课后作业。
(二)一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?
表面积的变化教学设计篇三
1.通过包装问题,体验策略的多样化,发展优化思想。
2.在操作、观察、分析等活动中,综合运用有关知识,解决物体表面积的问题,发展空间观念。
3.在探索表面积规律的活动中,感受学习数学的乐趣。教学重难点运用表面积的知识解决实际生活中的包装问题。
一、新课导入。
在平时的超市中,我们经常会看见一些物体叠放在一起,如:盒装的餐巾纸,你们看到是怎么叠放的呢?为什么在超市中只采用了第一种的叠放方法呢?通过今天的学习我们就会了解的。
二、新课探究。
1、探究一。
将两盒巧克力(如下图)包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?(接缝处忽略不计)。
表面积:(3×2+1×2×2+1×2×3)×2=(6+4+6)×2=32(平方分米)。
表面积:(3×2×2+1×2+3×2×1)×2=(12+2+6)×2=40(平方分米)。
表面积:(3×1+2×2×1+2×2×3)×2=(3+4+12)×2=38(平方分米)。
有的同学并没有计算出它们的表面积,一看就知道第一种方法包装纸最省,你知道为什么吗?把面积最大的面重叠起来,这样包装就能使包装纸最省。
2、探究二。
有三种不同的包装方法把面积大的面重叠起来,这样包装纸最省。
表面积:3×2×2+2×1×6+3×1×6=42(平方分米)。
小巧发现了一种特殊的包装方法,你看得懂吗?这种包装方法是不是最省材料的方法呢?
表面积:(2+1)×3×2+3×2×2+(2+1)×2×2=42(平方分米)。
是不是所有的长方体的包装盒都可以采用这样的叠放方法呢?
3、小结。
三、课内练习。
1、练习一。
(5×3+5×2+2×3)×2×2-2×3×2=31×2×2-12=112(平方厘米)。
答:拼成长方体的表面积最大是112平方厘米拼成表面积最小的长方体。
(5×3+5×2+2×3)×2×2-5×3×2=31×2×2-30=94(平方厘米)。
答:拼成长方体的表面积最大是94平方厘米。
2、练习二。
3、练习三。
四、教学反思。
通过今天的学习,学生们知道了将几个相同的长方体拼成大长方体时有多种拼法。把面积最大的两个面拼在一起,就可以使拼成图形的表面积最小,将面积最小的两个面拼在一起,就可以使拼成图形的表面积最大。此规律应多引导学生自己去推导总结出来并加以应用,才能达到教学效果。
表面积的变化教学设计篇四
1、教师演示:把两个体积是1立方厘米拼成一个长方体。
提问:体积有没有变化?
学生观察、交流、讨论(可以计算、可以用肉眼观察)鼓励方法的多样性。
小结:把2个体积是1立方厘米的正方体拼成一个长方体,体积没有发生变化。
追问:把3个体积是1立方厘米的正方体拼成一个长方体,体积有没有发生变化?
再次小结:同样大小的正方体拼成一个长方体,体积不发生变化。
2、课件再次演示:把两个体积是1立方厘米拼成一个长方体。
让学生通过拼一拼,计算或观察的方法来发现,在小组讨论,再集体交流。
组织交流:a两个同样大小的正方体拼成长方体,表面积发生变化了吗?
b拼成长方体后表面积是增加了还是减少了?
c那么具体减少的是哪几个面的面积呢?(请学生指指摸摸)明确表面积减少了原来2个正方形面的面积,即减少了2平方厘米。
3、深入探究:
课件演示操作要求:
(1)、如果用3个、4个正方体拼成长方体,表面积又发生了什么变化呢?(排法要求是排成一排)。
(学生自己猜想、操作、探究、验证)。
提醒学生把相关数据及时填在表中。并交流填写结果。
(2)、当正方体增加到5个6个时,表面积会怎么变化呢?
学生先猜想,再通过拼一拼来验证。
(3)、发现规律:你能联系操作和填表的过程提出自己发现的规律吗?
给予充分时间让学生讨论。
交流(可以有多种表述,只要符合题意即可)。
“从最简单的体积变了,表面积变了,或每一种具体拼法减少了哪两个面的面积都是可以的。”
(1)、学生操作探究讨论。
交流:“体积没有变,表面积变了。”“都比原来减少了2个面的面积,但不同的拼法减少的面积就不同。(交流时课件演示三种不同的拼法)。
(2)、你能看出哪个大长方体的表面积最大,哪个最小吗?(学生交流讨论)。
(3)、怎么验证你的发现呢?(引导学生通过计算验证自己的发现)。
小结:不管怎样拼,每次都会减少两个长方形面的面积;而减少的面积越少,拼成的大长方体的表面积就越大。
二、拼拼说说。
1、课件演示:用6个体积是1立方厘米的正方体可以拼成不同的长方体。
问:哪个长方体的表面积?大多少?
学生观察,并动手拼一拼,再体积讨论交流,交流时请学生说说你是怎么想的。
(教师应侧重引导学生应用前面发现的规律,并通过对拼成的每个长方体的具体分析得出。)。
2、拼10包火柴盒,包成一包有几种包法?怎样包装最节省包装纸。
学生分组操作讨论交流。
教师引导学生具体分析每一种包装方法,并适当说明理由。
“怎样包装最省纸”就是什么最少?(拼成的长方体的表面积最小)。
怎样拼最少呢?(5盒叠一起,并排两叠)。
三、全课小结。
通过这节实践活动课,你知道了什么?
“相邻体积单位间的进率”教学设计。
一、复习导入。
1、教师提问: 。
(3)我们认识的体积单位有哪些?
板书:立方米立方分米立方厘米。
二、自主探索验证猜测。
1、教学例11。
(1)挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。
(2)提问:这两个正方体的体积是否相等?你是怎样想的?
(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)。
(3)用图中给出的数据分别计算它们的体积。
学生分别算一算,然后在班内交流:
棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)。
棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)。
(4)根据它们的体积相等,可以得出怎样的结论?
1立方分米=1000立方厘米(板书:=)。
(5)谁来说一说,为什么1立方分米=1000立方厘米?
2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
学生在小组里讨论。(板书:立方米=1000立方分米)。
引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。
三、巩固深化。
1、出示书第30页的“练一练”。
学生先独立完成。
交流你是怎样想的。
2、出示练习七第1题。
学生独立完成表格。
班内交流:说说长度、面积和体积单位有什么联系?
而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?
3、出示练习七的第2题。
学生先独立完成。
交流:你是怎样想的。
指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。
4、出示练习七的第3题。
学生独立完成。
交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。
5、出示练习七的第4题。
学生独立完成后集体交流。
四、课堂总结。
通过这节课的学习,你有什么收获?
表面积的变化教学设计篇五
《表面积的变化》是在学生认识并掌握了长方体、正方体特征及会计算长方体与正方体表面积的基础上教学的。学生对旧知识已经有了一定的积累,但空间思维还没有真正形成。为了使学生更好地理解表面积的变化,我加强动手操作,按照创设情境——实践操作——自主探究——掌握规律的教学流程进行教学。结合本课的教学实际情况,谈几点反思:
一、创设情境。
新课伊始,我通过创设情境,带领同学们到商场看看有关商品的包装问题,让学生说一说“为什么我们所见到的都是用这种样式进行包装呢”这一情境,引发学生思考。这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,为探索正方体和长方体在拼摆过程中表面积的变化打下了良好的基础。
二、引导参与。
数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。本节课,在体验规律中,我安排了3次拼拼算算:活动一:两个正方体拼成长方体后表面积的变化情况。活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。每次操作完学具后,我又安排了小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两盒长方体形状的巧克力包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
三、以练促思。
在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。用八个相同的正方体拼成一个长方体,表面积的变化情况;把一个面积较大的长方体和一个面积较小的正方体拼成一个图形,这个图形的表面积的变化情况。培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。
总之,本节课同学们学习兴趣浓厚,积极主动,课堂上学生通过动手操作,认真观察,独立思考,互相讨论,合作交流,发现了知识,领悟了知识,品尝到了成功的喜悦。
表面积的变化教学设计篇六
教学内容:教科书第36-37页.教学目标:1.让学生通过观察和实际操作,探索简单几何体组合过程中表面积的变化规律,进一步发展动手操作能力和空间观念.2.让学生应用发现的规律解决一些简单的实际问题.3.让学生进一步体会图形学习与生活实际的联系,感受图形学习的价值,提高数学学习的兴趣.
作者:咸高兵作者单位:江苏省淮安市复兴中心小学,223224刊名:小学时代(教育研究)英文刊名:primaryschooltimes年,卷(期):20xx“”(11)分类号:g62关键词:
表面积的变化教学设计篇七
从复习正方体、长方体表面积计算公式入手,进行拼正方体引起表面积减少,引发学生思考。这样设计能刺激学生产生好奇心,进而唤醒学生强烈的参与意识,产生学习的需要,为探索正方体和长方体在拼摆过程中表面积的变化打下了良好的基础。
数学的学习过程不是让学生被动的吸收教材和教师给出的现成结论,而是由一个学生亲自参与的、生动活泼的、主动的和富有个性的过程。本节课,在体验规律中,我安排了3次拼拼算算:活动一:两个正方体拼成长方体后表面积的变化情况。活动二:用若3个相同的正方体拼成大长方体,表面积的变化情况。活动三:用四个相同的长方体拼成大长方体,表面积的变化情况。每次操作完学具后,我又安排了小小组进行了讨论:如比较一下拼成的长方体的表面积与原来两个正方体的`表面积之和,是否相等?将3个、4个甚至更多个相同的正方体摆成一行,拼成一个长方体,表面积比原来减少几个正方形面的面积?其中有什么规律吗?将两盒长方体形状的巧克力包成一包,可能有几种不同的包装方法?哪种方法包装纸最省?等问题在小组里讨论、交流各自的想法。这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强团队协作意识。
在学生掌握了表面积的变化规律后,安排了拼拼说说,运用规律这一环节。用八个相同的正方体拼成一个长方体,表面积的变化情况;把一个面积较大的长方体和一个面积较小的正方体拼成一个图形,这个图形的表面积的变化情况。培养了学生优化思维和求异思维的能力,促进课堂效益的提高,也使学生在愉快的气氛中,感受到学习的乐趣。同学们可以动手拼一拼。
表面积的变化教学设计篇八
教学内容:
小学数学第十二册教材p33~p34。
教学目标:
1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。
2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。
教学媒体:
圆柱形物体、学具、多媒体课件。
教学重点:
教学过程:
一、猜测面积大小,激发情趣导入。
1、用你们手上的a4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)。
2、这两个圆柱谁的侧面积谁大?为什么?
3、复习:圆柱的侧面积=底面周长×高。
刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。
二、组织动手实践,探究圆柱表面积。
1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)。
2、你们觉得这两个圆柱谁的表面积大?为什么?
生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。
3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?
生:计算的方法。
圆柱的表面积=侧面积+两个底面的面积(板书)。
4、那现在你们就算算这两个圆柱的表面积是多少?
生:(不知所措)没有数字怎么算啊?
师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?
生1:我想知道圆柱体的底面半径和高。
生2:我想知道圆柱体的底面直径和高。
生3:我想知道圆柱体的底面周长和高。
师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。
5、汇报展示:
情况一:半径:31.4÷3.14÷2=5(cm)。
底面积:3.14×5×5=78.5(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+78.5×2=748.576(平方厘米)。
情况二:半径:18.84÷3.14÷2=3(cm)。
底面积:3.14×3×3=28.26(平方厘米)。
侧面积:31.4×18.84=591.576(平方厘米)。
表面积:591.576+28.26×2=648.096(平方厘米)。
师:通过我们计算验证了我们刚才的判断是正确的。
接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?
生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。
生2:这样做挺麻烦的有没有更简单一点的方法呢?
6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)。
教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。
问:这个近似的长方形的长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)。
所以圆柱体表面积=长方形面积=底面周长×(高+半径)。
用字母表示:s=c×(h+r)。
我们用这个方法来验证一下我们的例2看是不是比原来简单?
汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)。
那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。
本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。
三、分组闯关练习。
1、多媒体出示题目。
第一关(填空)。
沿圆柱体的高剪开,侧面展开后会得到一个形,长是圆柱的(),宽是圆柱的(),因此圆柱的侧面积=()×()。
第二关。
一个圆柱的底面直径是2分米,高是45分米,它的侧面积是()平方分米,它的底面积是()平方分米,它的表面积是()平方分米。
第三关(用你喜欢的方法完成下面各题)。
一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?
2、汇报结果,给予评价。
我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。
四、质疑(同学们还有什么疑问吗?)。
五、反馈小结:
教学反思。
1、自主探究,体验学习乐趣。
以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。
2、合作交流,加深对知识的理解深度。
给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。
表面积的变化教学设计篇九
义务教育课程标准实验教科书数学六年级上册表面积的变化。
2、情感目标:学生在活动中体会合作的乐趣,感悟数学与生活的密切联系;
3、价值目标:学生能运用知识解释生活中的一些现象,将数学知识应用到日常生活中去。
多媒体、每人准备一个长方体和一个正方体、每组准备一张包装纸和一根塑料绳。
一、复习:
小结:看来,同学们对长方体和正方体都有了一定的认识。在我们的日常生活中,会经常看到像这样长方体或正方体的外包装盒。
二、引入课题:(出示牛奶的包装盒)。这是牛奶的包装盒,它有多大呢?求包装盒的大小就是求什么?板书(表面积)让我们打开包装盒,看看里面的牛奶是怎样摆放的?(显示牛奶的摆放样式)其实这些牛奶还可以摆成其它样式进行包装,请大家看,(电脑演示几种不同的摆放样式),那么为什么我们所见到的都是用这种样式包装的呢?我想其中一定有一些奥秘吧。你们想知道吗?让我们在这堂实践活动课中探索和寻找答案吧。
2.如果同桌的同学把你们手中的小正方体像这样拼在一起,可以拼成一个什么图形?拼成后的长方体的体积和原来两个正方体的体积之和相比有没有变化呢?表面积呢?同组的同学一起算一算,说一说。
3.组织大家讨论。
4.交流讨论的想法。
5.小结:同学们都发现,用两个相同的正方体拼成一个长方体,体积不变,表面积会变化,那么为什么会变呢?让我们仔细观察,深入研究。
7.小结:(电脑演示)用两个完全一样的小正方体拼成一个长方体,拼成后的长方体表面积减少了原来两个面的面积。
9.请小组的同学先拼一拼、算一算,然后把下表填写完整。
当若干个正方体拼成一排时:
正方体的个数2345610。
拼成后长方体表面积减少原来几个面的面积246。
仔细观察,每一列中上下两个数之间的联系,你有什么发现吗?
2.拿出一个长方体,量一量这个长方体的长宽高各是多少,并记录下来。
3.小组的同学依据长宽高的长度算一算这个长方体的表面积是多少,比一比哪个小组算得又快又准。
5.讨论两个相同的长方体拼成一个大长方体,有不同的拼法,小组的同学互相指一指,减少的是哪些面。
a.将上下面相拼时,减少的就是上下两个面的面积之和。
b.将左右面相拼时,减少的是左右两个面的面积之和。
c.将前后面相拼时,减少的是前后两个面的面积之和。
6.看来表面积减少的多与少,和原来的.长方体的各个面的大小是有关系的。大家讨论讨论有什么关系呢?(电脑显示:把较大的面拼在一起,表面积就减少的较多,把较小的面拼在一起,表面积就减少的较少)。
7.同学们的这个发现可了不起了,它在日常生活中得到了广泛的应用。当我们购买数量较多的同种商品时,往往就会选择经过包装的组装产品。比如一包12袋的面纸,一箱24盒的牛奶,一卷18支的铅笔,这些物品在进行包装时,可不是随意的,而是经过一番考虑的。为这些产品进行包装的厂家会考虑些什么呢?大家发表一下自己的看法吧。先在小组里说一说。
五、联系生活,拓展应用。
六、作品展示,总结收获,并补充完整课题:
通过这堂课的探索和研究,我们不仅发现了表面积的变化规律,而且了解了一些物品包装的学问,将数学和生活紧紧地联系在了一起,愿同学们在今后的学习生活中更多的去观察和思考,那样我们会感受到更多生活的乐趣,数学的乐趣!
表面积的变化教学设计篇十
教学内容:p21-22页例3-例4,完成“做一做”及练习四的部分习题。
教学目标:
1、在初步认识圆柱的基础上理解圆柱表面积的含义,掌握圆柱表面积的计算方法,会正确计算圆柱表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的.能力。
3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。
教学难点:运用所学的知识解决简单的实际问题。
教法:启发引导法。
学法:自主探究法。
教具:课件。
教学过程:
一、定向导学(5分)。
(一)导学。
1.指名学生说出圆柱的特征.。
2.口头回答下面问题.。
(1)怎样求圆的周长与面积?
(2)怎样求圆柱的侧面积?
3、导入课题。
(二)定向。
揭示学习目标。
2、会正确计算圆柱表面积,能解决一些有关实际生活的问题。
二、自主探究(10分)。
(一)填空。
1、因为圆柱体有两个()和一个(),所以。
表面积的变化教学设计篇十一
教材内容和在本册教材中的地位:
《圆柱的表面积》是在学生五年级学习了长正方体表面积面的旋转,了解了点、线、面之间的关系,和认识了圆柱的基本特征后,安排的一节课,通过让学生观察、想象、操作等活动,运用迁移规律掌握圆柱的侧面积、表面积的计算方法,并加以应用,以解决生活中的实际问题。学好这部分内容,为下节探究圆柱体积降低难度,进一步发展学生的空间观念,为学生进入中学学习其它几个几何知识打下坚实的基础,因此它具有很重要的承上启下作用。
学情分析:
学生对圆柱体是有一定认识的,70%的学生知道圆柱体的表面积是哪,但是全班只有10%的学生会求圆柱表面积,而且这些孩子都是在外面上过补习班或者进行预习记住圆柱的表面积计算公式的。由此可见,学生对圆柱的表面积了解的比较少,存在一定的困难。
教学目标:
1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。
3、培养学生的合作意识和主动探求知识的学习品质和实践能力。
教学重难点:
重点。
难点。
圆柱体侧面积计算方法的推导以及圆柱表面积的计算方法。
教学过程。
一、激趣导入。
(复习圆柱体的特征)。
师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。
引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。
二、目标定向。
1、我能理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。
2、我能通过对已有知识的迁移,探索新知识。
三、自主合作。
2、要求圆柱的表面积,首先应该计算它的底面积和侧面积。
(二)根据条件,计算圆柱的底面积。
圆柱的底面是圆形,同学们会求它的面积吗?
1、引导探究圆柱体侧面积的计算方法。
设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?
2、计算圆柱体的侧面积。
1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?
2、学生根据数据进行计算?
四、交流展示。
底面积×2+侧面积=表面积。
1、小组合作探究。(剪圆柱形纸筒)。
2、汇报交流研究结果,各小组展示。
3、小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。
(三)以小组为单位自己做例4,做完组长检查。
五、拓展延伸。
1、求出下面各圆柱的侧面积.。
(1)底面周长是1.6米,高是0.7米。
(2)底面半径是3.2分米,高是5分米。
2、计算下面各圆柱的表面积.(单位:厘米)。
(1)底面直径是12米,高是16米。
(2)底面半径是3.2分米,高是5分米。
底面积=圆面积。
底面积×2+侧面积=表面积。
课后反思:
我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中从扶到放,让学生自己去解决,让他们在动手操作、合作探究中学习,在体验中获得数学的乐趣。
1、实践操作。
在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。
让学生通过看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。其次,让学生通过动手,把自己课前准备的圆柱体模型展开,可以得到圆柱体的侧面积是一个长方形或者正方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式。
2、精讲多练。
新知的获得时间要短,课后的练习要从易到难。
本课我采取了分层练习法,先让学生练习侧面积的计算,再让学生试着把底面积乘2再加上侧面积得出圆柱体的表面积;这个计算过程很复杂,难度也很大。
数学来源于生活又服务于生活,所以我选取了两道生活中的圆柱表面积计算题,一道是完整的圆柱表面积,一道是特殊的圆柱表面积,丰富了学生的数学思维,也让学生学会了举一反三,学以致用。
当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练。
表面积的变化教学设计篇十二
【教学目的】:
1、使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
2、培养学生分析推理,解决实际问题的能力。
3、通过学生学习讨论,运用知识的迁移类推,培养学生的自主能动性。
4、在计算机操作中培养学生的信息素养。
【教学重点】:
使学生理解和掌握求圆柱的侧面积和表面积的计算方法。
【教学难点】:
在计算机操作中培养学生的信息素养。
【教具准备】:
计算机辅助教学课件一套。
【教学过程】:
一、创设情境,提出问题。
1、电脑显示:给一个圆柱形罐盒加外包装纸,包装纸要裁多大,应依什么大小来判断?(配有一幅圆柱形罐头盒图)。
2、点击鼠标,显示下一页:圆柱的侧面积和表面积计算(课题)。
二、自由选择,自学新知。
1、电脑显示:自学新知a自学新知b。
说明:在学习新的'知识点中,老师给大家提供了两个学习方案,自学新知a形象直观,容易理解,自学新知b相对理解较难,请大家根据自己的学习情况,自由选择相应的学习方案。
2、学生选择好后,调整座位,把选择相同学习方案的学生分坐在一起后,进入自学。
(展开侧面)。
自学新知a:
表面积的变化教学设计篇十三
1.教材分析:本课的教学内容是建立在学生已有的认知结构上。学生已经掌握了长方体和正方体的特征及长方体、正方体表面积的计算,在现有的老教材中,没有安排“表面积的变化”的例题教学,课后练习安排也甚少。但是,我觉得这部分的内容在生活中相当实用,因此增加了本节课的教学内容。本课的主要任务是研究几个相同的正方体(或长方体)拼起来,得到的立体图与原来几个正方体(长方体)表面积之和的关系,发现并理解其中的变化规律,培养空间观念,解决物品的包装问题。
2.学情分析:类似包装的问题学生在日常生活中经常遇到,本节课创设了“包装巧克力”的情境,使学生综合应用表面积等知识来讨论如何包装最省包装纸的问题,感受数学与实际生活的密切联系,体验解决问题策略的多样化,发展优化思想,提高解决实际问题的能力。
1.利用表面积等有关知识,探索并发现多个相同正方体、长方体叠放后表面积的变化规律,并能运用发现的规律解决一些简单的实际问题。
2.在操作、观察、分析、讨论等活动中,进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
3.通过解决物品包装设计问题,进一步增强应用数学意识,体验解决问题的基本过程、方法与策略的多样化,发展优化思想。
4.激发主动探究的欲望,感受学习愉悦,逐渐养成独立思考、合作互助的习惯。
教学重点:运用发现的表面积的变化规律,解决简单的实际问题。
解决措施:从学生已有的经验出发,倡导教师为主导,学生为主体。通过实践操作、小组讨论等形式,充分调动学生学习的积极性,引导学生思考问题,让学生在实际操作与问题情境中,逐步探寻表面积的变化规律,并能运用规律解决实际问题。
1.合理分组,明确分工,强调合作。
2.以小组为单位,每小组准备若干个正方体的学具和若干个长方体的物品。
信息技术应用:
多媒体课件。
依据的理论:
根据五年级学生的年龄、心理、认知规律特点,遵循数学来源于生活,又运用于生活的原则,从学生已有的经验出发,倡导教师为主导,学生为主体,思维训练和语言表达为主线。以学生发展为本,进行探究性学习,培养学生的创新精神和实践能力。
一、情境导入激发兴趣。
二、自主探究发现规律。
(一)探究两个正方体拼成长方体后表面积的变化情况。
1.动手操作,仔细观察。
2.小组讨论,发现规律。
3.全班交流,得出结论,估计学生可能的发现:
b、两个正方体拼成一个长方体后,表面积减少了原来2个正方形面的面积。
(板书:每重叠1次减少2个面)。
c、拼成的长方体的表面积比原来两个正方体的表面积之和减少了2平方厘米。
(二)探究用若干个相同的正方体拼成大长方体后表面积的变化情况。
1.仔细观察发现,完成表格填写。
将3个、4个、5个的1立方厘米的正方体拼成一个长方体。仔细观察拼成后的长方体与原来几个正方体的体积、表面积又各有什么变化?(可以直接展开想象,也可以通过实物操作)(关注4个有2种拼法)。
2.学生完成表格,教师巡视指导。
3.结合表格,探讨规律。
仔细观察表格中的数据和实物图形,你又有什么新的发现?(板书:重叠面越多,表面积减少越多)。
(三)探究用两个相同的长方体拼成大长方体后表面积的变化情况。
2.小组合作:讨论包装方法。
(交流时课件呈现三种不同的拼法,比较各种方法的表面积)估计学生可能的发现:
b、都比原来减少了2个面的面积,但不同的拼法减少的面积就不同。
c、包装后表面积最小的那一种方法所用的包装纸最省。(板书:重叠面越大,表面积减少越多)。
4.师生共同总结:不管怎样拼,每次都会减少两个长方形面的面积;而减少的面积越大,拼成的.大长方体的表面积就越小,这时所用的包装纸就最省。
三、运用规律,内化新知。
教师谈话:刚才我们通过操作发现,几个相同的正方体或长方体,拼成一个较大的长方体,表面积都减少了,而且都有一定的规律。看看谁能运用刚才发现的规律再来解决一些数学问题。
1.分组讨论。
2.全班交流:估计可能只讲出有3种常见的包装方法,其中的有一种包装方法用纸最省。
3.多媒体呈现:第二种用纸最省的包装方法,两盒横着上下拼,另一盒竖着拼在一起(数据特殊)。
4.观察比较,讨论交流:为什么这两种方法包装纸最省?
5.师生共同总结:拼成的长方体的表面积最小,所用的包装纸最省。在设计包装时要考虑把最大的面重叠起来,就一定要仔细观察图形的特点和数据。
四、深化知识,整合延伸。
1.判断:
(1)2个棱长都是5厘米的正方体拼成一个长方体,体积不变,表面积减少了25平方厘米。
(2)一根长方体的木料,横截成3个小长方体后,增加了4个面。
五、体验收获,激励评价。
六、布置作业,课外拓展。
【让学生带着问题下课,使学生把探究的兴趣延伸到课外。】。
表面积的变化教学设计篇十四
1、教师演示:把两个体积是1立方厘米拼成一个长方体。
提问:体积有没有变化?
学生观察、交流、讨论(可以计算、可以用肉眼观察)鼓励方法的多样性。
小结:把2个体积是1立方厘米的正方体拼成一个长方体,体积没有发生变化。
追问:把3个体积是1立方厘米的正方体拼成一个长方体,体积有没有发生变化?
再次小结:同样大小的正方体拼成一个长方体,体积不发生变化。
2、课件再次演示:把两个体积是1立方厘米拼成一个长方体。
提问:表面积有没有发生?
让学生通过拼一拼,计算或观察的方法来发现,在小组讨论,再集体交流。
组织交流:a两个同样大小的正方体拼成长方体,表面积发生变化了吗?
b拼成长方体后表面积是增加了还是减少了?
c那么具体减少的是哪几个面的面积呢?(请学生指指摸摸)明确表面积减少了原来2个正方形面的面积,即减少了2平方厘米。
3、深入探究:
课件演示操作要求:
(1)、如果用3个、4个正方体拼成长方体,表面积又发生了什么变化呢?(排法要求是排成一排)。
(学生自己猜想、操作、探究、验证)。
提醒学生把相关数据及时填在表中。并交流填写结果。
(2)、当正方体增加到5个6个时,表面积会怎么变化呢?
学生先猜想,再通过拼一拼来验证。
(3)、发现规律:你能联系操作和填表的过程提出自己发现的规律吗?
给予充分时间让学生讨论。
交流(可以有多种表述,只要符合题意即可)。
从最简单的体积变了,表面积变了,或每一种具体拼法减少了哪两个面的面积都是可以的。
(1)、学生操作探究讨论。
交流:体积没有变,表面积变了。都比原来减少了2个面的面积,但不同的拼法减少的面积就不同。(交流时课件演示三种不同的拼法)。
(2)、你能看出哪个大长方体的表面积最大,哪个最小吗?(学生交流讨论)。
(3)、怎么验证你的发现呢?(引导学生通过计算验证自己的'发现)。
小结:不管怎样拼,每次都会减少两个长方形面的面积;而减少的面积越少,拼成的大长方体的表面积就越大。
1、课件演示:用6个体积是1立方厘米的正方体可以拼成不同的长方体。
问:哪个长方体的表面积?大多少?
学生观察,并动手拼一拼,再体积讨论交流,交流时请学生说说你是怎么想的。
(教师应侧重引导学生应用前面发现的规律,并通过对拼成的每个长方体的具体分析得出。)。
2、拼10包火柴盒,包成一包有几种包法?怎样包装最节省包装纸。
学生分组操作讨论交流。
教师引导学生具体分析每一种包装方法,并适当说明理由。
怎样包装最省纸就是什么最少?(拼成的长方体的表面积最小)。
怎样拼最少呢?(5盒叠一起,并排两叠)。
通过这节实践活动课,你知道了什么?
相邻体积单位间的进率教学设计。
1、教师提问:
(1)常用的长度单位有哪些?相邻的两个长度单位间的进率是多少?板书:米分米厘米。
(3)我们认识的体积单位有哪些?
板书:立方米立方分米立方厘米。
提问:你能猜出相邻两个体积单位间的进率是多少呢?引出课题:相邻体积单位间的进率。
1、教学例11。
(1)挂图出示一个棱长1分米的正方体和一个棱长10厘米的正方体。
(2)提问:这两个正方体的体积是否相等?你是怎样想的?
(引导学生根据两个正方体棱长的关系作出判断,即:1分米=10厘米,两个正方体的棱长相等,体积就相等。)。
(3)用图中给出的数据分别计算它们的体积。
学生分别算一算,然后在班内交流:
棱长是1分米的正方体体积是1立方分米;(板书:1立方分米)。
棱长是10厘米的正方体体积是1000立方厘米。(板书:1000立方厘米)。
(4)根据它们的体积相等,可以得出怎样的结论?
1立方分米=1000立方厘米(板书:=)。
(5)谁来说一说,为什么1立方分米=1000立方厘米?
2、提问:用同样的方法,你能推算出1立方米等于多少立方分米吗?
学生在小组里讨论。(板书:立方米=1000立方分米)。
引导学生把棱长1米的正方体和棱长10分米的正方体进行比较,并通过计算得出:1立方米=1000立方分米。
1、出示书第30页的练一练。
学生先独立完成。
交流你是怎样想的。
小结:相邻体积单位间的进率是1000,把高级单位的数改写成低级单位的数要乘进率1000,所以要把小数点向右移动三位;把体积低级单位的数改写成高级单位的数,要除以进率1000,所以要把小数点向左移动三位。
2、出示练习七第1题。
学生独立完成表格。
班内交流:说说长度、面积和体积单位有什么联系?
而它们的进率是不同的,你能说说它们每相邻两个单位间的进率分别说多少呢?
3、出示练习七的第2题。
学生先独立完成。
交流:你是怎样想的。
指出:面积单位换算与体积单位换算的区别,它们相邻单位间的进率不同。
4、出示练习七的第3题。
学生独立完成。
交流:结合前两题说说怎样把高级单位的数量换算成低级单位的数量,再结合后两题说说怎样把低级单位的数量换算成高级单位的数量。
5、出示练习七的第4题。
学生独立完成后集体交流。
通过这节课的学习,你有什么收获?
表面积的变化教学设计篇十五
本次实践活动《表面积的变化》主要是研究几个相同的正方体(或长方体)拼起来,得到的立体与原来几个正方体(长方体)表面积之和的关系,发现并理解其中的变化规律,培养空间观念。
教材分为两个大的版块:拼拼算算和拼拼说说。拼拼算算中三个活动,第一个活动是引导学生用两个相同的正方体拼出长方体,体验到两个正方体拼成长方体后表面积减少了原来两个面的面积。第二个活动,是引导学生用3个、4个甚至更多个相同的正方体摆成一行,拼成长方体,探索拼成后的长方体的表面积的变化规律。第三个活动用两个相同的长方体拼成大长方体,体验到不管怎么拼,每次都会减少两个长方形面的面积;而减少的面积越少,拼成的大长方体的表面积就越大。三个活动都是通过学生动手操作、观察、直观思考、合作交流等活动,让学生体验并发现物体拼摆过程中表面积的变化规律,提高空间观念的积累水平,发展数学思考。拼拼说说,主要是引导学生应用前面发现的规律,解决实际问题。
[教学目标]。
1、使学生通过把几个相同的正方体或长方体拼成较大的长方体的操作活动,探索并发现拼接前后有关几何体表面积的变化规律,并让学生应用发现的规律解决一些简单实际问题。
2、使学生在活动中进一步积累空间与图形的学习经验,增强空间观念,发展数学思考。
3、使学生进一步体会图形学习与实际生活的联系,感受图形学习的价值,提高数学学习的兴趣和学好数学的自信心。
[教学准备]。
多媒体课件,各小组准备8个1立方厘米的正方体,6个完全相同的长方体,以及10盒同样的火柴盒。
[教学过程]。
一、拼拼算算,体验规律。
活动一:两个正方体拼成长方体后表面积的变化情况。
1、谈话:同学们,这是两个体积1立方厘米的正方体,在同学们桌上就有一些体积1立方厘米的正方体,你能用这两个正方体拼成一个长方体吗?动手拼一拼。
2、学生拼后反馈两种拼法。
(1)学生可能的发现:
计算法:长方体的表面积比两个正方体表面积的和少2平方厘米。
观察法:拼成长方体后,表面积减少了原来两个面的面积。
正方体的个数。
原来正方体一共有几个面。
拼成后减少了原来几个面的面积。
活动二:用若干个相同的正方体拼成大长方体,表面积的变化情况。
1、谈话:3个、4个甚至更多个相同的正方体像这样摆成一行,(课件出示数据3、4、5……及直观图)拼成一个长方体,表面积比原来减少几个正方形面的面积?请同学们小组合作拼一拼,完成这张操作汇报单。
2、生小组活动,师巡视。
3、汇报。
谈话:用3个正方体拼,原来一共有几个面?拼成后减少了原来几个面的面积?4个呢?5个呢?课件相机把数据填入表格。
提问:用6个拼,是个什么情况?请同学们想一想,也可以动手拼一拼。
提问:用8个拼又是什么情况呢?汇报后也请学生拼一拼。
4、谈话:老师看到好多同学没拼就知道结果了,在刚才拼的过程中,你们发现什么规律了吗?先自己想一想,然后在小组里交流你的想法。
学生可能的发现:
(1)原来正方体有几个面,只要乘6就可以了。
(2)每多一个正方体,表面积就多减少2个正方形面的面积。
(3)正方体的个数减1就是拼的次数,再乘2就是减少了几个正方形面的面积。
5、验证:我们一起到表格中来看一看,是不是蕴藏着这样的规律?
活动三:用两个相同的长方体拼成大长方体,表面积的变化情况。
1、谈话:刚才我们研究了几个正方体拼成一排时表面积的变化,那长方体在拼摆过程中又有什么变化呢?我们继续来研究。
2、提问:这是两个同样大的长方体,长是5厘米,宽是4厘米,高是3厘米,你能用这两个长方体拼成三个不同的大长方体吗?在小组里拼一拼。
3、学生拼后反馈三种拼法。
可能的发现:
(1)拼成长方体后,体积没有变化,表面积有变化。
(2)都比原来减少了2个面的面积,不同的拼法减少的面积就不同。
追问:谁也来指一指,少的两个面在哪?其他同学看着直观图想象一下少了哪两个面?
引导学生发现:3号长方体表面积最大,1号长方体表面积最小,因为减少的面积越少,拼成的大长方体的表面积就越大。
6、验证:我们就来算一算,三个大长方体的表面积分别比原来到底减少了多少?
学生计算、反馈。
二、拼拼说说,运用规律。
汇报时:说一说是怎样想的?
3、谈话:生活中像这样物体的拼接问题还是很多的,今天我们就来开展一个拼装火柴盒的实践活动。
(2)学生小组操作。
(3)学生展示摆法。
(4)这几种摆法中,哪种最节省包装纸?先自己想一想,然后和小组的同学交换一下意见。
(5)反馈可能出现几种摆法,就请同学们再在小组里拼一拼,比一比,说一说,然后让学生在比较中得出最节省的包装方法。
三、全课小结:
您可能关注的文档
- 2023年个人住房证明怎么开(优质15篇)
- 中秋节的来历和风俗100字(实用12篇)
- 2023年下半年学期计划(模板17篇)
- 2023年写景优美散文600字(优秀18篇)
- 2023年写景散文初一(精选15篇)
- 最新写景优美散文900字(汇总10篇)
- 公司企业文化活动创意文案(3篇)
- 清除课桌文化活动心得体会(3篇)
- 清除课桌文化文案(3篇)
- 解除劳动协议书和离职证明(优质13篇)
- 学生会秘书处的职责和工作总结(专业17篇)
- 教育工作者分享故事的感悟(热门18篇)
- 学生在大学学生会秘书处的工作总结大全(15篇)
- 行政助理的自我介绍(专业19篇)
- 职业顾问的职业发展心得(精选19篇)
- 法治兴则民族兴的实用心得体会(通用15篇)
- 教师在社区团委的工作总结(模板19篇)
- 教育工作者的社区团委工作总结(优质22篇)
- 体育教练军训心得体会(优秀19篇)
- 学生军训心得体会范文(21篇)
- 青年军训第二天心得(实用18篇)
- 警察慰问春节虎年家属的慰问信(优秀18篇)
- 家属慰问春节虎年的慰问信(实用20篇)
- 公务员慰问春节虎年家属的慰问信(优质21篇)
- 植物生物学课程心得体会(专业20篇)
- 政府官员参与新冠肺炎疫情防控工作方案的重要性(汇总23篇)
- 大学生创业计划竞赛范文(18篇)
- 教育工作者行政工作安排范文(15篇)
- 编辑教学秘书的工作总结(汇总17篇)
- 学校行政人员行政工作职责大全(18篇)
相关文档
-
2023年有关公司取消奖金的通知范文(模板8篇)
20下载数 711阅读数
-
科普实践心得体会和感想(优质10篇)
39下载数 549阅读数
-
2023年辅警个人自我剖析材料(模板12篇)
50下载数 686阅读数
-
最新防溺水手抄报内容文字怎么写(通用12篇)
29下载数 342阅读数
-
2023年个人工作经验总结(精选11篇)
32下载数 961阅读数
-
最新政工师专业技术总结(优质12篇)
45下载数 610阅读数