手机阅读

函数建模教学设计(大全13篇)

格式:DOC 上传日期:2023-11-24 19:23:37 页码:11
函数建模教学设计(大全13篇)
2023-11-24 19:23:37    小编:zdfb

阅读是提高语文素养的重要途径,要保持阅读的习惯,并学会做好读书笔记。如何保持良好的心理状态,成就个人和职业发展?以下是小编搜集的一些总结样例,供大家参考借鉴。

函数建模教学设计篇一

指数函数的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。指数函数第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

1.知识目标:掌握指数函数的概念,图像和性质

2.能力目标:通过数形结合,利用图像来认识,掌握函数的性质,增强学生分析问题,解决问题的能力。

3.德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质。

(三

1、重点:指数函数的定义、性质和图象

2、难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质。

3、关键:能正确描绘指数函数的图象

(三)

在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

一.

1,学情分析:大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。

2, 学法指导:针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

函数建模教学设计篇二

时,函数值变化情况的区分.(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.二.学情分析:学生在学习了函数概念和函数性质基础上对函数有了初步认识,但我所教班时平行班,学生学习兴趣不浓,积极性高,针对这种情况,教学时要总层层设问降低难度,用几何画板直观演示提高学生学习积极性,时学生主动学习。

三.教学目标:

知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。

过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

投影仪。

六.教学方法。

启发讨论研究式。

七.教学过程。

(一)创设情景。

学生回答:y与x之间的关系式,可以表示为y=2x。

问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x表示,剩留量用y表示。

学生回答:y与x之间的关系式,可以表示为y=0.84x。

(二)导入新课。

引导学生观察,两个函数中,底数是常数,指数是自变量。设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数y=2x、y=0.84x分别以01的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。

一般地,函数是r。

叫做指数函数,其中x是自变量,函数的定义域的含义:

”如果不这样规定会出现什么情况?问题:指数函数定义中,为什么规定“设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。

对于底数的分类,可将问题分解为:

(1)若a。

则在实数范围内相应的函数值不存在)都无意义)。

在这里要注意生生之间、师生之间的对话。

设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是r;并为学习对数函数,认识指数与对数函数关系打基础。

教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。

1:指出下列函数那些是指数函数:

在同一平面直角坐标系内画出下列指数函数的图象。

画函数图象的步骤:列表、描点、连线思考如何列表取值?教师与学生共同作出。

图像。

时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。

利用几何画板演示函数特征。由特殊到一般,得出指数函数。

的图象,观察分析图像的共同。

的图象特征,进一步得出图象性质:

教师组织学生结合图像讨论指数函数的性质。

设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。

特别地,函数值的分布情况如下:

设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。3.简单应用(板书)。

1.利用指数函数单调性比大小.(板书)。

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.

例1.比较下列各组数的大小。

(1)与;(2)与;。

(3)与1.(板书)。

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.

函数建模教学设计篇三

幂函数的图象和性质

画幂函数的图象并由图象概括其性质

教学内容问题、任务师生活动设计意图

1.某种蔬菜每千克1元,若购买千克,需要支付元是函数吗?

2.正方形的边长为,那么它的面积是的函数吗?

3.立方体的边长为,那么它的体积是的函数吗?

4.正方形的面积为,那么它的边长是的函数吗?

5.某人内骑车 内行进了1,那么他骑车的平均速度是函数吗?

6.这五个函数有什么共同特征?

7.给出幂函数的定义

8.下列函数是幂函数吗?

9.幂函数的定义和指数函数的定义有什么区别?

10. 已知幂函数的图象过点(4, ),求这个函数的解析式?

11. 观察幂函数的图象

12.作函数的图象。

13. 作函数的图象。

14.作函数的图象。

15.根据所作函数的图象,分别讨论这些函数的性质。

16.你能证明幂函数在[0,+ 上是增函数吗?

17.从整体上把握幂函数的图象。

作业p79习题1、2、3

师:投影展示问题,引导学生根据函数的定义进行分析。

生:根据函数定义思考并回答。

师:板书这5个函数表达式。

师生:从形式上分析:是指数幂的形式,其中底数是自变量,指数是常数。

师:板书定义。

生:根据幂函数的形式进行辨别。

生:对比指数函数的定义,指出区别。

师生:用待定系数法共同完成。

师:几何画板展示幂函数图象,随着指数 的改变,幂函数图象的形态和位置都发生改变。

生:观察指数的变化和图象的变化

师:幂函数的图象因指数 不同而形态各异,远比指数函数的.图象复杂。但我们可以通过讨论其中有代表性的几个函数来了解幂函数的图象特征。生:在同一坐标系中作出三个函数的图象。

师:巡视指导。

师:用几何画板作出三个函数的图象。

生:对照检查,注意所作图象的特征。

师:提示横坐标取值: 。巡视学生作图情况。

生:列表,并描点作图。

师:投影函数图象。

师:指导作图:取横坐标0。

生:作图。

师:投影图象。

师:引导学生根据函数的图象,指出函数的性质。

生:指出函数性质并完成课本第78页表格。

生:尝试证明。

师生:共同完成证明。

师:几何画板动态展示幂函数在第一象限的图象,引导学生观察图象的变化。师生共同归纳图象的主要特征:在 上:减函数 :猛增:增函数 :缓增通过实际问题,引入幂函数。由特殊到一般的提练、概括。形式定义,注意辨别。对比,加深印象,避免与指数函数混淆。进一步加强理解幂函数定义。对幂函数的图象作整体感知,了解幂函数的图象和性质与指数 关系密切。三个函数都是初中学过的,描三个点作出简图,把握图象的主要特征。数形结合。

函数建模教学设计篇四

1、教材的地位和作用: 函数是高中数学学习的重点和难点,函数的贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图像与性质,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学的重点和难点:根据这一节课的内容特点以及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及其运用,本节课的难点是指数函数图像和性质的发现过程,及指数函数图像与底的关系。

基于对教材的理解和分析,我制定了以下的教学目标

1、知识目标(直接性目标):理解指数函数的定义,掌握指数函数的图像、性质及其简单应用。

2、能力目标(发展性目标):通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论,增强学生识图用图的能力。

3、情感目标(可持续性目标): 通过学习,使学生学会认识事物的特殊性与一般性之间的关系,培养学生勇于提问,善于探索的思维品质。

1、教学策略:首先从实际问题出发,激发学生的学习兴趣。第二步,学生归纳指数的图像和性质。第三步,典型例题分析,加深学生对指数函数的理解。

2、教学: 贯彻引导发现式教学原则,在教学中既注重知识的直观素材和背景材料,又要激活相关知识和引导学生思考、探究、创设有趣的问题。

3、教法分析:根据教学内容和学生的状况, 本节课我采用引导发现式的教学方法并充分利用多媒体辅助教学。

函数建模教学设计篇五

“指数函数”的教学共分两个课时完成。第一课时为指数函数的定义,图像及性质;第二课时为指数函数的应用。“指数函数”第一课时是在学习指数概念的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数作好准备。

在讲解指数函数的定义前,复习有关指数知识及简单运算,然后由实例引入指数函数的概念,因为手工绘图复杂且不够精确,并且是本节课的教学关键,教学中,我借助电脑手段,通过描点作图,观察图像,引导学生说出图像特征及变化规律,并从而得出指数函数的性质,提高学生的形数结合的能力。

大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。

为了调动学生学习的积极性,使学生变被动学习为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,我借助电脑,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。总之,本堂课充分体现了“教师为主导,学生为主体”的教学原则。

函数建模教学设计篇六

指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,所以在这部分的教学安排上,我更注意学生思维习惯的养成,特作如下思考:

1、设计应从哪些方面,哪些角度去探索一个具体函数,我在这部分设置了三个环节。

(1)由具体的折纸的例子引出指数函数。

设计意图:贴近学生的生活实际,便于动手操作与观察。让学生充分感受我们生活中大量存在指数函数模型,从而便于学生接受指数函数的形式,突破符号语言的障碍。

(2)通过研究几个特殊的底数的指数函数得到一般指数函数的规律。符合学生由特殊到一般的,由具体到抽象的学习认知规律。

(3)通过多媒体手段,用计算机作出底数a变换的图像,让学生更直观、深刻的感受指数函数的图像及性质。

通过引入定义剖析辨析运用,这个由特殊到一般的过程揭示了概念的内涵和外延;而后在教师的点拨下,学生作图观察探究交流概括运用,使学生在动手操作、动眼观察、动脑思考、合作探究中达到对知识的发现和接受,同时渗透了分类讨论、数形结合的思想,提高了学生学习数学概念、性质和方法的能力,养成了良好的学习习惯。

2、课堂练习前后呼应,各有侧重。

通过问题呈现,变式教学,不但突出了重点内容,把知识加固、挖深。使教学目标得以实现。而且注重知识的延续性,为以后的学习奠定了基础。

3、教学过程设计为六个环节:

1、情景设置,形成概念2、发现问题,深化概念。

3、深入探究图像,加深理解性质。

4、强化训练,落实掌握。

5、小结归纳,拓展深化。

6、布置作业,延伸课堂。各个环节层层深入,环环相扣,充分体现了在教师的'指导下,师生、生生之间的交流互动,使学生亲身经历知识的形成和发展过程。

4、通过学案教学为抓手,让学生先学。

老师在课前充分了解了学情,以学定教,进行二次备课,抓住学生的学习困难,站在学生学的角度设计教学。

5、学生真思考,学生的真探究,才是保障教学目标得以实现的前提。

在教学中,教师通过教学设计要以给学生充分的思维空间、推理运算空间和交流学习空间,努力创设一个“活动化的课堂”才可能真正唤起学生的生命主体意识,引领他们走上自主构建知识意义的发展路径。

函数建模教学设计篇七

2、教学目标的确定及依据。

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用。

(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、

分析、归纳等逻辑思维能力.。

(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数。

学的精确和美妙之处,调动学生学习数学的积极性.。

3、教学重点与难点。

难点:对数函数性质中对于在a1与01两种情况函数值的不同变化.。

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生实验、观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透类比、数形结合、分类讨论等数学思想方法.。

2、教学手段:

计算机多媒体辅助教学.。

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)类比学习:与指数函数类比学习对数函数的图像与性质.。

(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,

(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,

使问题得以圆满解决.。

1、温故知新。

设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,

有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生。

分析问题的能力.。

2、探求新知。

函数建模教学设计篇八

函数。

教学。

目标:

1.理解函数的概念,了解函数三要素.2.通过对函数抽象符号的理解与使用,使学生在符号表示方面的水平得以提升.3.通过函数定义由变量观点向映射观点得过渡,使学生能从发展与联系的角度看待数学学习.教学重点难点:重点是在映射的基础上理解函数的概念;难点是对函数抽象符号的理解与使用.教学用具:投影仪教学方法:自学研究与启发讨论式.教学过程:

而(3)定义域是,值域是,法则是乘2减1,与完全相同.求解后要求学生明确判断两个函数是否相同应看定义域和对应法则完全一致,这时三要素的又一作用.(2)判断两个函数是否相同.(板书)下面我们研究一下如何表示函数,以前我们学习时虽然会表示函数,但没有相系统研究函数的表示法,其实表示法有很多,不过首先应从函数记号说起.4.对函数符号的理解(板书)首先让学生知道与的含义是一样的,它们都表示是的函数,其中是自变量,是函数值,连接的纽带是法则,所以这个符号本身也说明函数是三要素构成的整体.下面我们举例说明.例例33已知函数试求(板书)分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再实行计算.含义1:当自变量取3时,对应的函数值即;含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.计算之后,要求学生了解与的区别,是常量,而是变量,仅仅中一个特殊值.最后指出在刚才的题目中是用一个具体的解析式表示的,而以后研究的函数不一定能用一个解析式表示,此时我们需要用其他的方法表示,具体的方法下节课再进一步研究.。

三、

小结1.函数的定义2.对函数三要素的理解3.对函数符号的理解四、作业(略)。

函数建模教学设计篇九

“指数函数及性质”的教学共分两个课时完成,这是第一课时。本节课主要学习了指数函数的定义,研究了指数函数的图像及相关的性质。回顾这节课,心中有很多感想,也有下面一些思考:

1.这节课是在学生系统的学习了指数概念、函数概念,基本掌握了函数性质的基础上进行学习的,具有初步的函数知识,但是对于研究具体的初等函数的性质的基本方法和步骤还比较陌生,对于指数函数要怎么样进行较为系统的研究对学生来说是有困难的,因此这节课的每一个环节以我引导,以学生的自主探究为主来完成是符合学情的。

2.设计“指数函数的图象及性质”,“y=ax的图象和y=(1/a)x的图象间的关系”.“a的大小对函数图象的影响”三个问题,让学生通过几何画板软件动手画图操作、自主探究、主动思考来达到对知识的发现和接受,改变过去机械接受和死记结论的状况,符合新课改的理念,同时也完成了这节课的主要教学任务。

3.在对底数a的范围的思考及三个探究性问题后都设置了练习,能及时反馈学生对所探求到的知识的掌握程度,便于及时调整课堂教学行为。从课后看学生对这些知识的掌握应该是比较好的。

4.这节课的学习及对函数研究方法和步骤的总结对后续学习新的函数起到了重要的示范作用。

在整个的教学过程中,始终体现以学生为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,强调学生的品德、思维和心理等方面的发展。重视讨论、交流和合作,重视探究问题的习惯的培养和养成。同时,考虑不同学生的个性差异和发展层次,使不同的学生都有发展,体现因材施教的原则。

在教学的过程中,考虑到学生的实际,有意地设计了一些铺垫和引导,既巩固旧有知识,又为新知识提供了附着点,充分体现学生的主体地位。

三.存在的问题。

1.没有充分调动学生的积极性,课堂气氛显得沉闷。

2.尽量放手让学生自己去解决问题,教师自己讲得偏多,学生的主体作用体现得不够。

3.指数函数概念部分的教学时间稍多,后面教学过程稍显仓促,学生自主探究的时间不够,因此违背了教学设计的初衷。当然我会通过对学生作业的批改获得更全面的对学生知识掌握的评价和课堂效果的反思,并在后续的时间里修订课堂设计方案,达到预期的教学效果,实现学生的目标掌握和能力发展。

函数建模教学设计篇十

1.能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响.

2.能说出二次函数图象的开口方向、对称轴、顶点坐标、增减性、最值.

3.经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.

4.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.

文档为doc格式。

函数建模教学设计篇十一

教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。在得出结论之后,让学生能运用“两点确定一条直线”,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。

根据学生状况,教学设计也应做出相应的调整.如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是y=kx+b,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征—本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。

由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理解该知识,。在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如“随着x值的增大,y的值分别如何化?”,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分。课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。这是今后教学中应该注意的问题。

函数建模教学设计篇十二

由于每个学生的基础知识、智力水平和学习方法等都存在一定差别,所以本节课采用分层教学。既创设舞台让优秀生表演,又要重视给后进生提供参与的机会,使其增强学习数学的信心。具体题目安排从易到难,形成梯度,符合学生的认知规律,使全体学生都能得到不同程度的提高。

1.掌握二次函数的图像和性质,了解一元二次方程与二次函数的关系,能依据已知条件确定二次函数的关系式。

2.通过研究生活中实际问题,让学生体会建立数学建模的思想.通过学习和探究xxxx考点问题,渗透数形结合思想及分类讨论思想。

3.查漏补缺,采用小组学习使复习更有效,学生在自主探索与合作交流的过程中,全方位“参与”问题的解决,获得广泛的数学活动经验。

探究利用二次函数的最大值(或最小值)解决实际问题的方法。

如何将实际问题转化为二次函数的问题。

[活动1]学生分组处理前置性作业

教师出示习题答案。组织学生合作交流,深入到每个小组,针对不同情况加强指导。

教师重点关注学困生。

针对学生的实际情况,对习题进行分层处理,树立学困生学习数学的信心。

[活动2]师生共同解决作业中存在的问题

学生自主研究,分组讨论后,然后提出问题,教师对学生回答的问题进行评价

教师重点归纳数学思想。

通过对习题的处理,使学生进一步加深对二次函数有关概念及性质的理解,能用函数观点解决实际问题。同时,小组学习也使学生全方位参与问题的解决。

[活动3]习题现中考

例1(xxxx,南宁)

教师结合教材对比、分析

学生小组合作,完成例题

教师归纳:本题考查了二次函数、一元二次方程与梯形的面积等知识。

对于二次函数与其他知识的综合应用,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,从而把握解题的突破口。

[活动4]例题现中考

例2(xxxx,济宁)

例3(xxxx,黔东南州)

学生自学,教师指导,让学生讨论回答这两道题的共同特点。

让学生根据讨论的结果概括、归纳出“每每型”二次函数模型的题型特点和解决这类问题的关键。

[活动5]知识提高阶段

教师给出一组习题,学生讨论完成。

知识再运用有助于知识的巩固。

[活动6]小结、布置作业

问题

本节学了哪些内容?你认为最重要的内容是什么?

布置作业

把错题整理到作业本上。

师生共同小结,加深对本节课知识的理解。

让学生参与小结并有不同的答案,可以增强学生学习的积极性和主动性,培养学生对所学知识回顾思考的习惯。

函数建模教学设计篇十三

1.能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响.

2.能说出二次函数图象的开口方向、对称轴、顶点坐标、增减性、最值.

3.经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.

4.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.

您可能关注的文档