手机阅读

2023年等腰三角形的说课(汇总13篇)

格式:DOC 上传日期:2023-11-11 10:36:41 页码:12
2023年等腰三角形的说课(汇总13篇)
2023-11-11 10:36:41    小编:ZTFB

文学作品是人类情感和思想的抒发。写总结时,我们要用简练明了的语言,使读者能够轻松理解和接受。总结范文中的经验和教训,或许可以避免我们重蹈覆辙。

等腰三角形的说课篇一

本章需要理解掌握的知识点有:

一、轴对称图形和轴对称。

1、轴对称图形是一个图形沿一条直线对折,直线两旁的部分能够完全重合。

2、轴对称是指两个图形沿一条直线对折,直线两旁的两个图形能够完全重合。

3、对称轴都是直线。

4、联系:

如果把轴对称图形两旁的部分看成两个图形,那么这两个图形成轴对称。

如果把成轴对称的两个图形看成一个整体,那么这个整体就是轴对称图形。

二、轴对称的性质。

如果两个图形关于某直线对称,那么对称轴是对应点所连线段的垂直平分线。

三、轴对称的判定。

如果两个图形上对应点所连线段都被同一条直线垂直平分,那么这两个图形关于这条直线对称。

(作一个图形关于某直线对称图形的依据;找对称图形对称轴的依据)。

四、线段垂直平分线。

1、性质:线段垂直平分线上的点到线段两端点的距离相等(证线段相等的依据)。

2、判定:到线段两端点距离相等的点在这条线段的垂直平分线上(判断垂直的依据)。

3、在题目中只要遇到线段垂直平分线,就要想着把垂直平分线上的点和线段两端点连起来。就能得到线段相等。

4、三角形三边垂直平分线交于一点(外心),该点到三角形三个顶点的距离相等。

五、坐标系中的对称。

点p(a,b)关于x轴对称点的坐标为(a,-b)。

点p(a,b)关于y轴对称点的坐标为(-a,b)。

性质1、等腰三角形两底角相等(等边对等角)。

在一个三角形证明角相等的重要依据。

性质2、等腰三角形顶角平分线垂直平分底边。

也就是:等腰三角形顶角平分线、底边上高和底边中线互相重合。

1、定理:等角对等边。

2、推论1、三个角都相等的三角形是等边三角形。

3、推论2、有一个角是60度的等腰三角形是等边三角形。

4、定理、在直角三角形中,30度角所对直角边等于斜边的一半。

七、角的平分线。

1、性质:角平分线上的点到角两边的距离相等。

2、判定:角的内部到角两边距离相等的点在角的平分线上。

3、三角形三个内角平分线交于一点(内心),该点到三角形三边的距离相等。

4、在题目中只要遇到角平分线,就要想着把角平分线上的点向角的两边作垂线段。就能得到线段相等。

等腰三角形的说课篇二

1、掌握证明的基本步骤和书写格式。

2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。

等边三角形的判定定理和直角三角形的性质定理。

能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。

教学后记

教师活动学生活动

一、定理:一个角等于60°的等腰三角形是等边三角形

1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。

2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。渗透分类讨论的思维方法。

3.关注学生得出证明思路的过程,讲评。讲解定理:有一个角是60°的等腰三角形是等边三角形。

二、一种特殊直角三角形的性质

1.让学生拼摆事先准备好的三角尺,提问:能拼成一个怎样的三角形?能否拼出一个等边三角形?并说明理由。

3.演示规范的证明步骤,同时引导学生意识到:通过实际操作探索出的结论还需要给予理论证明。

4.让学生准备一张正方形纸片,,按要求动手折叠。

5.讲解例题,应用定理。

6.布置学生做练习。

练习:课本随堂练习1

三、课堂小结:

通过这节课的学习你学到了什么知识?了解了什么证明方法?

四、作业:同步练习

1.积极地自主探索、思考等腰三角形成为等边三角形的条件。可能会从边和角两个角度给出答案。

2.积极思考,通过老师的点拨,分类讨论当这个角分别是底角和顶角的情况。

3.认真听讲,体会分类讨论的数学思维方法,理解定理。

1.积极动手操作,并很快得到结果:可以拼出等边三角形。

2.在拼摆的基础上继续探索,得出结论。并在探索的过程中得到证明的思路。

3.认真听讲,体会从探索和尝试中得到结论的过程和证明方法的步骤,掌握定理。

4.很有兴趣地折叠纸片,体会定理的应用。

5.听讲,体会定理的应用。

6.认真做练习。

(学生小结:掌握证明与等边三角形、直角三角形有关的性质定理和判定定理)

等腰三角形的说课篇三

本周三下午第三节,我们全体数学组成员及教研处王主任共同学习了由数学教研组长x老师执教的《等腰三角形》一课。听后,颇受启发及教育。

首先,我觉得x老师很用心的在准备这节课,讲这节课。因为是上学期小组汇报课讲过的“熟课”,不仅学生学过,而且老师们都听过。如果没有新意,很容易使学生及听课老师产生感官疲劳。但x老师匠心独具的是,在课堂导入的环节,巧妙地安排了一场“爱因斯坦的智商”智力游戏,使学生“惊喜”的发现,自己居然和爱因斯坦的智商同样高,自信心无比高涨,后又借机对学生进行具备了爱因斯坦的智商,还要有勤奋学习不说空话的态度,激发了学生的学习动力。

其次,课堂教学中,x老师始终面带微笑,语速不急不缓,使学生如沐春风,在轻松愉快的氛围中完成了整堂课教学。另外,在课堂练习的环节,设计了积分制的回答方式,调动了学生认真思考及回答问题的积极性,效果甚好。

整堂课的设计条理清晰,层次分明,注重学生动手操作,合作探究。既使学生理解并掌握了等腰三角形的性质,同时又培养了学生动手操作勇于探索的能力。

美中稍显不足的是,课件有些简单,背景色调有点刺眼,可以做些改进。课堂习题学生已在上次听课时做过,对答案很熟悉,新鲜感稍差。可在习题设计上做些改动,变换方式和数据,效果会更好的。

总之,我觉得这是一堂很成功的课。也使我体会到要想讲好一堂课,必须要以无比敬业的态度认真去准备,多方搜索,积极探索,不断反思总结改进。

3篇1本周三下午第三节,我们全体数学组成员及教研处王主任共同学习了由数学教研组长x老师执教的《等腰三角形》一课。听后,颇受启发及教育。......

等腰三角形的说课篇四

本周三下午第三节,我们全体数学组成员及教研处王主任共同学习了由数学教研组长x老师执教的《等腰三角形》一课。听后,颇受启发及教育。

首先,我觉得x老师很用心的在准备这节课,讲这节课。因为是上学期小组汇报课讲过的“熟课”,不仅学生学过,而且老师们都听过。如果没有新意,很容易使学生及听课老师产生感官疲劳。但x老师匠心独具的是,在课堂导入的环节,巧妙地安排了一场“爱因斯坦的智商”智力游戏,使学生“惊喜”的发现,自己居然和爱因斯坦的智商同样高,自信心无比高涨,后又借机对学生进行具备了爱因斯坦的智商,还要有勤奋学习不说空话的态度,激发了学生的学习动力。

其次,课堂教学中,x老师始终面带微笑,语速不急不缓,使学生如沐春风,在轻松愉快的氛围中完成了整堂课教学。另外,在课堂练习的环节,设计了积分制的回答方式,调动了学生认真思考及回答问题的积极性,效果甚好。

整堂课的设计条理清晰,层次分明,注重学生动手操作,合作探究。既使学生理解并掌握了等腰三角形的性质,同时又培养了学生动手操作勇于探索的能力。

美中稍显不足的是,课件有些简单,背景色调有点刺眼,可以做些改进。课堂习题学生已在上次听课时做过,对答案很熟悉,新鲜感稍差。可在习题设计上做些改动,变换方式和数据,效果会更好的。

总之,我觉得这是一堂很成功的课。也使我体会到要想讲好一堂课,必须要以无比敬业的态度认真去准备,多方搜索,积极探索,不断反思总结改进。

等腰三角形的说课篇五

本单元教学三角形的相关知识,这是在学生直观认识过三角形的基础上教学的,也是以后学习三角形面积计算的基础。内容分五段安排:第一段通过例1、例2第22~25页形成三角形的概念教学三角形的基本特征,三角形的高和底;第二段通过第26~27页教学三角形的分类,认识锐角三角形、直角三角形和钝角三角形;第三段第28~29页通过例4教学三角形的内角和;第四段通过第30~32页例5、例6认识等腰三角形和等边三角形及其特征。第五段第33~34页单元练习。全面整理知识,突出三角形的分类以及关于边和角的性质。

教材中的思考题有较大的思维容量,能促进学生进一步理解并应用三角形的知识。编写的三篇“你知道吗”介绍三角形的稳定性、制作雪花图案的方法和埃及的金字塔,能激发学生学习三角形的兴趣,丰富对三角形的认识。

1、让学生在“做”图形的活动中感受三角形的形状特点和结构特征。

空间与图形的概念教学,一般要让学生经历感知——表象——形成概念的过程,教材注意按学生的认识规律安排教学过程。学生在第一学段直观认识了三角形,本单元继续教学三角形的知识,教材经常采用“活动——体验”的教学策略,即组织学生“做”图形,让他们在做的过程中体会图形的特点,主动构建对图形的比较深入的认识。

(1) “做”三角形,感受边、角和顶点。第22页例题教学三角形的边、角和顶点,分三个层次编写:首先呈现一幅宜昌长江大桥的照片,引起学生对三角形的回忆,并联系生活里的三角形进行交流,感知三角形;;然后安排学生想办法做每人至少“做”一个三角形并在小组里交流进一步强化表象;;最后讲解三角形的边、角和顶点。

学生“做”三角形并不难,做的方法必定是多样的。用小棒摆、在钉子板上围、在方格纸上画三角形在第一学段都曾经做过,现在学生还可能剪、折、拼……“做”三角形的目的不在结果,要注重学生在做的过程中是怎样想的、怎样做的,把精力放在建立边、角和顶点等概念上。所以,交流的时候要分析各种做法的共同点,如用三根小棒、三段细绳、三条线段……才能“做”成三角形,三角形有三条边;小棒、细绳、线段……必须两两相连,三角形有三个顶点和三个角。

(2)围三角形,体会两条边的长度和必须大于第三边。《标准》要求:

通过观察、操作,了解三角形的两边之和大于第三边。这是新课程里增加的教学内容,第23页例题教学这个知识。教材通过学生的具体体验来使学生知道这一点。首先,为学生提供四根长度分别是10cm、6cm、5cm、4cm的小棒,向学生提出问题:任意选三根小棒,能围成一个三角形吗?然后让学生在操作中发现有时能围成三角形,有时围不成三角形,并直觉感受这是为什么。最后通过比较每次选用的三根小棒的长度,找到原因、理解规律。

例题的编写特点是不把知识结论呈现给学生,而让学生在“做”图形活动中发现现象、研究原因、体会规律。因此,教学这道例题时要注意三点:第一,课前作好充分的物质准备,力求让每一名学生都有长10cm、6cm、5cm、4cm的四根小棒。第二,课上要让学生自由地选择小棒,充分地围,经历围成和围不成三角形的过程,并给学生提供思考“为什么”的时间。第三,要引导学生从直觉感受上升到理性认识。在用小棒围的时候,他们的直觉感受是如果两根较短的小棒的另一端能够碰到一起,就围成了三角形;如果不能碰到一起,就围不成三角形。这种直觉感受是必要的,但不是最终的。要在直觉感受的基础上,进一步对三根小棒的长度进行分析研究,这才是“数学化”的过程,才能在获得数学结论的同时又学习用数学的方法进行思考。

(3)对图形量、剪、折,亲身感知并认识体会等腰三角形、等边三角形的特点。第30页的两道例题分别教学等腰三角形和等边三角形,认识等腰三角形和等边三角形,首先要感知各自的特点,教材注意突出教学的这一过程。都分三个层次教学:

第一层次是通过学生量三角形边的长度,理解“等腰”“等边”的含义;第二层次是仿照例题示范的方法剪出一个等腰三角形和一个等边三角形,继续体会它们的边的长度关系;第三层次是给出等腰三角形各部分的名称,发现等腰三角形、等边三角形的角的大小关系。其中第二层次的教学比较难。两道例题里“茄子”和“白菜”提的问题不同,前一道例题的问题是“用下面的方法剪成的三角形是等腰三角形吗”,因为学生容易看懂图文结合表述的剪法,通过这个问题引导学生关注到两条腰是同时剪的,长度肯定相同。后一道例题的问题是“你会像下面这样剪出一个等边三角形吗”,因为学生不容易看懂教材展示的方法,教材希望通过这个问题引导学生先研究剪法、弄懂剪法。关键在找到那个红色的点,先对折又斜折是为了让三条边的长度都相同。

2、从已有经验中提炼数学概念。

在具体的感性材料里提取本质特征,形成理性认识是概念教学的渠道之一。丰富的感性经验与清晰地认识特征是建立正确概念的前提。

(1)循序渐进,帮助学生逐步理解三角形的高。三角形的底和高是三角形里的重要概念,为了让学生自己感受底和高,教材用人字梁为素材,利用学生在生活中对人字梁“高度”的认识进行测量,感受三角形人字梁的高,以此为基础引入三角形高的概念。第24页例题、“试一试”以及“想想做做”里的部分习题把三角形高的教学分成四步进行:

第一步让学生量出人字梁图形的高度是多少厘米。这里讲的“高”度还是生活中的高,是从上往下竖直的距离。虽然与数学里的高含义不同,但也有相似的地方——垂直的、最短的。设计这一步教学的目的是唤醒已有的生活经验,营造认识三角形高的基础。第二步结合图形讲述三角形的高。学生对教材里的一段话,既要联系人字梁的高来体会,又要超越人字梁这个具体实物比较概括地理解。联系人字梁的高能降低理解概念内涵的难度,超越人字梁具体实物才能形成真正的数学概念。教材表述的是三角形高的描述式定义,描述了高的位置,描述了画高的方法。教学时可以把教师边画边讲与学生边描边体会相结合,重在对概念的理解,不要死记硬背。第三步通过“试一试”扩大概念的外延。数学里平面图形的高的本质属性是“垂直”而不是“竖直”,竖直是“从上往下”,垂直是“相交成直角”。例题教学三角形的高先从竖直的位置讲起,“试一试”举出各种摆放位置的、不同类型的三角形以及不同边上的高,要求学生测量三角形的高和底的长度,使学生在操作中进一步体会高的概念,认识只要是从一个顶点到对边的垂直线段就是三角形的高,感受底和高的相应关系,进一步理解三角形底和高的意义。这样让学生准确地理解概念的内涵,全面地把握概念的`外延,深刻地体会高与底之间的对应联系。第四步通过“想想做做”p25第1题的画高练习,进一步感受描述式定义,巩固对高的理解。其中最右边的是直角三角形,它的两条直角边互为高和底,学生在画高的时候能够体会到这一点。另外让学生阅读资料了解三角形的稳定性三角形的稳定性是其重要特性,教材安排了“你知道吗”,让学生通过阅读并做实验体会这一特性。这里注意一点本册教材知识要求学生画请指定底边的高,这些高都是在三角形里面的,三角形外的高不做要求。还有就是在作图的时候一定要注意一些作图规范。

(2)联系对直角、锐角、钝角的认识,引导学生探索三角形的分类。三角形的分类教学,必须使学生在充分的感知中体会三个内角大小有几种情况,理解三角形分类的方法及分类的合理性。第26页例题让学生在给角分类的活动中体会三角形的分类。首先呈现了6个不同形状的三角形,要求学生仔细观察各个三角形的每个角是什么角,并把观察结果填在预设的表格里。然后引导学生分析研究表格里的数据信息,发现有些三角形的三个角都是锐角,有些三角形里有一个直角和两个锐角,有些三角形里有一个钝角和两个锐角,从而引发可以给三角形按角分类,获得直角三角形、锐角三角形和钝角三角形的认识,掌握不同三角形的特点。准确而精炼的语言总结了什么样的三角形是锐角三角形、直角三角形和钝角三角形。最后还用集合图表达三角形的分类以及各类三角形与三角形整体的关系。

教学三角形的分类要特别注意三点:第一,必须组织学生积极参与分类活动,在独立思考的基础上合作交流,逐渐形成共识。第二,要扣紧概念的关键,让学生理解为什么锐角三角形强调三个角都是锐角,直角三角形和钝角三角形只讲一个直角或一个钝角,从而掌握判断时的思考要点。如第33页第2题里左边和中间的三角形能确定它们分别是钝角三角形和直角三角形,因为在图中分别看到了1个钝角和1个直角。右边的三角形只看到1个锐角,不能确定它是什么三角形。第三,要用好第27页“想想做做”第3~7题,让学生在图形的变换中加强对各类三角形的认识。认识了三角形的分类,还要通过具体的观察、判断和操作、画图等活动进一步巩固对不同三角形的认识。教材在这方面有比较多的安排。例如p27的“想想做做”第3~7题,分别让学生判断各是什么三角形,巩固对各类三角形的认识;围出、折出、剪出和画出指定的三角形,使各类三角形的表象再现。特别是第7题是一道开放题,可以让学生通过画一画、说一说,互相交流,加深对各类三角形的认识,掌握各类三角形的特征。

3、从特殊到一般,通过实验得出三角形的内角和是180°。

让学生“了解三角形的内角和是180°”是《标准》规定的教学内容和教学要求,这里讲的“了解”不是接受和知道,而是发现并简单应用。教材安排三角形内角和的学习,主要让学生由特殊到一般,通过自己的探索活动认识与掌握三角形内角和是180°。

(1)第28页教学三角形的内角和,采用了“质疑——解疑”的教学策略,实验是策略的核心,是解疑的手段。

首先计算同一块三角尺上的3个角的度数和。由于学生在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的3个角的和都是180°。并由此产生疑问:其他三角形的内角和也是180°吗?由此产生学习的愿望。接着安排学生通过实验解疑,用实验的方法验证、确认三角形内角和的结论。把一个三角形的3个角拼在一起,从拼成的是平角得出3个角的度数和是180°。教材要求小组合作,剪出不同类型的三角形进行实验,通过实验获得直接认识,验证自己的猜想,从而确认三角形的三个内角的和是180°,得出结论。因此,实验的对象有较大的包容性,实验的结论有很强的可靠性。学生会完全信服三角形的内角和是180°这一普遍规律。最后并通过“试一试”,应用三角形内角和求未知角的度数,巩固三角形内角和的结论。

(2)为了让学生深刻地理解三角形内角和的规律。在认识三角形内角和以后,教材通过应用促进学生掌握这一内容,并应用解决问题。如p29.“想想做做”1~3题,应用三角形内角和求未知角的度数,在三角形的变换中判断内角和各是多少,巩固所获得的结论;。“想想做做”巧妙地设计了两道辨析题一道是第2题:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?另一道是第3题:正方形内角和360°,对折出的三角形内角和180°,再对折成的小三角形内角和又是多少呢?解答这两道题时,学生的思考会在180°和360°以及180°和90°不同答案上碰撞,碰撞的结果是进一步认识三角形的内角和是一个普遍规律,不因三角形的大小而改变,不因拼、折等图形变换而改变。另外,教材还从两个方面引导学生应用三角形的内角和:一是根据三角形中已知的两个角的度数,求另一个角的度数;二是解释为什么直角三角形里只有1个直角,钝角三角形里只有1个钝角。第6题,通过思考一个三角形中最多有几个钝角或直角,并应用三角形内角和的知识合理解释,加深认识三角形内角和及钝角三角形、直角三角形的特征。

4、注意三角形知识的内在联系

三角形的分类是按角的大小为标准的,而等腰三角形和等边三角形是以边的长度特点来定义的。不同特征的三角形中又存在内在联系,认识三角形应该让学生了解这些联系。在p31~32第2~4题里,就让学生了解等腰三角形可以同时是直角三角形、锐角三角形或钝角三角形,体会等腰三角形都是轴对称图形。p33第2题通过判断,进一步认识钝角三角形、直角三角形分别只有一个钝角或直角,而每类三角形都有锐角,即只看一个锐角无法判断是什么三角形。第3题使学生体会两个一样的直角三角形,可以拼成三角形,也可以拼成四边形,而且可以有不同的拼法。第5题需要综合本单元学习的三角形知识,依据三角形边长之间的关系,选择小棒按要求摆出等腰三角形和等边三角形。第6题,要应用对等边三角形特征的认识进行解释,第7题,让学生观察三角形判断各是什么三角形,感受可以从不同角度判定一个三角形是什么三角形,体会知识之间的内在联系。

5.注意培养学生的空间观念

观察、举例、做图形感受三角形

在p22例题里,引导学生先观察情景中的三角形,举出日常生活里接触过的三角形,加强三角形的表象,同时还要求学生做一个三角形,p23第1题也要求学生画三角形,把表象转化成具体的三角形再现出来,形成三角形的空间形象。

学生在看、围、折、剪等活动中获得各类三角形特征的直接体验

在空间与图形的学习中,引导学生实际操作,具体感受所学图形,积累对其形状、大小、位置关系的的感性认识,可以发展空间观念。教材在p27第2题通过观察、判断加强不同三角形形状的直接感受,第3~6题让学生围、折、剪图形,依据头脑里的表象再现出相应的图形,可以培养空间观念。第7题,需要依据三角形的特点进行分析、判断,知道可以分成两个怎样的三角形,才能有不同的分法。这些都有利于空间观念的发展。

让学生折一折、剪一剪、画一画掌握等腰三角形和等边三角形的直观形象

同样地,在认识等腰三角形和等边三角形时,也注重学生的动手实践,促进空间观念的发展。如p30、p31例中折一折、剪一剪,得出相应的图形,进一步体验各自的特点;p31“想想做做”第2~4题,也是动手剪一剪、画一画图形,并运用对图形特点的认识辨析相关图形,也是加强空间观念的手段与方法。

等腰三角形的说课篇六

本节内容的重点是定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.

本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.

本节课方法主要是“以学生为主体的讨论探索法”。在数学中要避免过多告诉学生现成结论。提倡鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。具体说明如下:

(1)参与探索发现,领略知识形成过程。

学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言.最后找一名学生用文字口述定理的内容。这样很自然就得到了定理.这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。

(2)采用“类比”的学习方法,获取知识。

由性质定理的学习,我们得到了几个推论,自然想到:根据定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论出来。如果学生提到的不完整,可以做适当的点拨引导。

(3)总结,形成知识结构。

第12页 。

等腰三角形的说课篇七

等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。等腰三角形的性质及判定是探究线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。

2、教学重点和难点。

本着新课程标准,在吃透教材基础上,我把探索等腰三角形的性质定为本节课的重点,通过创设问题和解决问题来突出重点。把等腰三角形性质的建立定为本课的难点,通过折纸实验和小组合作探究来突破难点。

1、学情分析。

我所教的学生,从认知的特点来看,好奇爱问,求知欲强,想象力丰富;并已初步具有对数学问题进行合作探究的能力。

2、三维目标。

根据教材结构和内容分析,考虑到学生已有的认知结构、心理特征,我制定如下目标:

知识与技能目标:

了解等腰三角形的概念,探索并掌握等腰三角形的性质,并会进行有关的论证和计算,以及运用所学的知识去解决实际问题。

过程与方法目标:

通过对性质的探究活动和例题的分析,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力;使学生进一步了解发现真理的方法(探究-猜想-归纳-论证)。

情感态度与价值观目标:

通过对等腰三角形的观察、试验、归纳,体验数学活动充满着探索性和创造性,数学就在我们身边。在操作活动中,培养学生的合作精神,在独立思考的同时能够认同他人.感受合作交流带来的成功感,树立自信心.

1、教法。

根据教材分析和目标分析,我确定本课主要的教法为探究发现法。采用“问题情境—探索交流—猜想验证——建立模型”的模式安排教学,并在各个环节进行分层施教。

2、学法。

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中我特别重视学法的指导。本课采用小组合作的学习方式,让学生遵循“观察——猜想——归纳——验证——反馈——实践”的主线进行学习。

《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。因此本节课我分以下六个环节组织教学。

(一)创设情境,激发兴趣。

1、多媒体展示房屋人字架、艾佛尔铁塔、龙塔、香港中国银行大厦的图片,问:你认识图片中的建筑物吗?图片中存在哪些几何图形?(等腰三角形、四边形、梯形)。

(通过实例的电脑展示,唤起学生的好奇心,提出问题,引导学生进入新知识的学习,创造一种探索的情景。在学习中,只有调动学生的非智力因素,特别是内在动机,才能使他们产生强烈的求知欲和以饱满的热情来学习新知识。)。

(二)观察实物,形成概念。

活动:学生通过观察自带的等腰三角形纸片认识等腰三角形的有关概念。

接着,我利用电脑演示等腰三角形定义的数学语言表达方式。

(让学生归纳定义增强学生的成就感,给出数学语言的表达,是为了培养学生文字语言、图形语言和符号语言的转化能力.同时也能培养学生正向思维和逆向思维的能力。)。

等腰三角形的说课篇八

(2)三个内角都相等(为60度)的三角形是等边三角形.

(4)两个内角为60度的三角形是等边三角形.

说明:可首先考虑判断三角形是等腰三角形。

首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。

其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。

等腰三角形的说课篇九

1、本小节内容安排在第十四章“轴对称”的第三节。等腰三角形是一种特殊的三角形,它是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特殊性质。这一节的主要内容是等腰三角形的性质与判定,以及等边三角形的相关知识,重点是等腰三角形的性质与判定,它是研究等边三角形,是证明线段相等角相等的重要依据,这也是全章的重点之一。

2、本节重在呈现一个动手操作得出概念、观察实验得出性质、推理证明论证性质的过程,学生通过学习,既体会到一个观察、实验、猜想、论证的研究几何图形问题的全过程,又能够运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力。

1、学生在此之前已接触过等腰三角形,具有运用全等三角形的判定及轴对称的知识和技能,本节教学要突出“自主探究”的特点,即教师引导学生通过观察、实验、猜想、论证,得出等腰三角形的性质,让学生做学习的主人,享受探求新知、获得新知的乐趣。

2、在与等腰三角形有关的一些命题的证明过程中,会遇到一些添加辅助线的问题,这会给学生的学习带来困难。另外,以前学生证明问题是习惯于找全等三角形,形成了依赖全等三角形的思维定势,对于可直接利用等腰三角形性质的问题,没有注意选择简便方法。

知识技能:1、理解掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、观察等腰三角形的对称性,发展形象思维。

2、通过时间、观察、证明等腰三角形性质,发展学生合情推理能力和演绎推理能力。

情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

重点:等腰三角形的性质及应用。

难点:等腰三角形的性质证明。

等腰三角形的说课篇十

1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。

2.通过学生之间的交流活动,培养学生主动与他人合作交流的意识和良好的学习习惯。

一、你知道吗?

课前预习。

sssasaaashl。

2.这条线段的两个端点的距离相等。

3.这个角的两边的距离相等。

4.这样的点有4个。

知识点睛。

1.线段垂直平分线上的点到这条线段的.两个端点的距离相等。

2.角平分线上的点到这个角的两边距离相等。

3.顶角的平分线底边上的中线底边上的高三线合一。

1、填空题。

2、如图,以等腰直角三角形aob的斜边为直角边向外作第2个等腰直角三角形aba1,再以等腰直角三角形aba1的斜边为直角边向外作第3个等腰直角三角形a1bb1,如此作下去。若oa=ob=1,则第个等腰直角三角形的面积。

等腰三角形的说课篇十一

今天我聆听了林**老师的公开课,让我学习的地方很多,不只是老师的设计以及上课的感染力吸引我,更多的是看到她的设计以及课堂的驾驭能力,如教学设计内容的取舍,教师的启发引导,课堂生成资源的利用,课堂小结与归纳等。下面我就林老师的《等腰三角形的判定定理》这节课谈谈自己的几点感受:

1.我们知道,数学学习是连贯的,每节课都起到承上启下的作用。林文娟老师首先复习回顾了等腰三角形的性质,然后通过合作学习让学生动笔作图,思考线段ab与ac相等吗?从而引出课题。这种以旧引新的方式符合学生认知特点,也符合数学新课程标准提出的“动手操作-----建立模型----解释与应用模型”的课堂模式。

2.在课堂教学中,提炼方法,结论成为课堂的一个亮点,往往这些是学生缺的东西,而当我们学习新知识后,教师要引导学生善于将新知识纳入到旧的体系中,形成新的知识体系。培养学生善于总结反思的习惯。达到知识,方法迁移,触类旁通的效果。这节课对判定定理的大前提“在同一个三角形中”分析的很到位,成为本节可的亮点。

3.数学课堂是培养学生思维的主阵地,思维是数学的灵魂,是形成数学能力、意识的桥梁.但是,数学思维具有高度抽象性,学生往往不易理解.特别是初中学生,从具体思维向抽象思维过度的时期,往往会受到阻碍。教学中教师如何通过启发诱导开启学生受阻的思维很见功底。

本课教学中,林老师在证明判定定理时,有启发学生通过添加辅助线构造等腰三角形“三线合一”,层层诱导,通过问题串的形式启发:1.添加怎样的辅助线?2过a作一条辅助线,有没有什么要求?(预设:四种添法,有高线,角平分线,中线,随意一条线)3.辅助线如何书写,4.如何应用。

1.新课的引入问题。本课的引入如果能用几何画板展示,效果应该会更好。

2.定理得出后,应该给出几何语言。教师准确而规范的例题示范是本节课甚至整个基础教育数学教学最最关键的环节。

(1)多媒体的使用问题:数学课不能整课使用多媒体,而只是某些重点难点的突破和例题的题目可以使用,其他环节应该取消。也就是把多媒体用成数学中的“微课”,如果声光电一起上,推导、演绎、结论啪啪啪的响,学生下课以后什么都没有,甚至连书写的规范都没有。思维训练等于0,长久后,学生得不到数学学习的乐趣,这也是导致高年级或者高中数学差生很多很多的主要原因。

(2)数学教师要学好几何画板。几何画板在课堂中就是微课使用10分钟以内,随时可以形成动画,能写成文本,能形成思维流。

(3)什么是数学好课?我觉得掌声、笑声、辩论声都在一节课出现就是好课,成功的课。只有掌声的课肤浅且做作,只有笑声的课庸俗,只有辩论声的课没有生命的意义。

等腰三角形的说课篇十二

这一节课主要学习等腰三角形“等边对等角”及“底边上的高、底边上的中线、顶角的平分线互相重合”的性质.本节内容既是前面知识的深化和应用,又是下节学习等腰三角形和等边三角形判别的预备知识,还是证明角相等、线段相等及两条直线互相垂直的依据。学好它可以为将来初三解决代数、几何综合题打下良好的基础。它在理论上有这样重要的地位,并在实际生活中也有广泛的应用,因此这节课的教学显得相当重要,起着承前启后的作用。

在此之前,学生已学习了轴对称图形,这为过渡到本节的学习起着铺垫作用。初二学生心理和认知发展规律要求在教学中要充分调动他们的激情,他们不喜欢鼓噪无味的数学课堂。根据认知理论和心理学的基本原理,学生对所学知识的掌握是通过感知阶段、理解阶段、巩固(记忆)阶段、应用(迁移)阶段的发展实现的,知识的掌握如此,思维能力的培养也是如此,也应遵循认知迁移的规律,逐极展开。

1、知识和技能目标:

能够探究,归纳,验证等腰三角形的性质,并学会应用等腰三角形的性质。

2.过程和方法目标:

经历剪纸,折纸等探究活动,进一步认识等腰三角形的定义和性质,了解等腰三角形是轴对称图形。

3.情感和价值目标:

培养学生的观察能力,激发学生的好奇心和求知欲,培养学习的自信心。

1.教学重点

等腰三角形的性质及应用

2.教学难点

等腰三角形性质的建立

教学过程

等腰三角形的说课篇十三

本节课教学设计较为简单,有利于学生掌握新知识。思路清晰,语言流畅,具有亲和力,课堂教学节奏合理,快慢结合,注意顺应学生的思维。知识回顾中用变换图形位置复习旧知识,有助于学生对旧知识的巩固,为本节课作铺垫。学生在教学中思考的时间较多,教师做到了以学生为主,教师为辅,将课堂交还给学生。学生积极性很高,生生互动很多。教学设计中设计了剪折图的活动,引导学生动手探究,体现了新课标中引导学生动手操作探究问题的要求。

建议。

1、要明确教学目标,教学设计要美观才有利于学生的学习。

2、给教学设计给听课教师而不是学生的学案。

3、时间的调控上要把握好。

4、要注重点明命题证明的步骤:审题、画图、写已知、写求证、证明。

您可能关注的文档