当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。那么心得体会该怎么写?想必这让大家都很苦恼吧。以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
推荐公式推导心得体会报告一
一、设疑导思 探索公式--------引导者
教师的主导作用首先体现在培养学生的学习兴趣方面。因为教师是课堂心理环境的直接创造者,教师“导入”的情境、语言、方法直接影响学生的学习兴趣及其探索知识的欲望。由于我校学生的基础都不是很好,所以本课采用学生刚学过的“多项式乘法法则”来吸引学生的注意力,提高学生的学习兴趣,从而使其端正学习态度全神贯注地投入到学习的整个过程中。
二、激活主题 理解公式--------促进者
教师的主导作用还应体现在积极进行学法研究,加强学法指导。本节课中,先用图形的面积来对公式作出直观的理解,再用口诀来概括公式,使学生对公式的理解更加形象生动;最后通过例题让学生按公式对号入座,进一步理解公式中的a和b既可以表示数也可以表示字母,既可以表示单项式也可以表示多项式。采用由直观到抽象,由抽象到形象,由形象到具体,层层递进,由浅入深,深入浅出的办法,使学生对完全平方公式有一个充分理解的过程。
三、组织交流 应用公式--------调控者
由于学生所处的文化环境、知识基础和自身的思维方式不同,将导致不同的学习结果,即使是思维反映很灵敏的学生,在有些时刻也会遇到一些思维障碍。本节课在学生练习过程中,要仔细观察学生探索活动的情绪表现,从学生的言语、表情、眼神、手势和体态等方面观察他们的内心活动,分析他们的思维状态和概念水平,捕捉各种思维现象,随时调整教学过程,让学生自己去反思、纠错,而教师则在关键时刻引导或者作出恰当的点拨。教师的主导作用还应体现在及时发现学生思维发展中出现的错误后有针对地指导、引导学生进行讨论和探究。尤其是对(—2a—5)2的应用可以看成〔(—2a)+(—5)〕2对应(a+b)2,也可以看成〔(—2a)—5〕2对应(a—b)2;更可以看成〔—(2a +5)〕2=(2a+5)2;而对于(a+b+c)2的应用,可以用多项式乘法法则(a+b+c)(a+b+c),也可以用完全平方公式,看成〔(a+b)+c〕2,也可以看成〔a+(b+c)〕2,不管是什么形式,最后结果是一样的。这样通过变式练习,从而使学生多角度、全方面地对完全平方公式进行充分认识,完全平方公式中的a和b可以表示单项式也可以表示多项式,完全平方公式可以看成一个公式也可以看成两个公式,增加学生对完全平方公式应用的灵活性,要让不同的学生得到不同的发展。
四、明晰结论 深化公式--------提高者
教师主导作用应是画龙点睛作用。观察思考、表达是伴随探究过程不可或缺的因素。本节课中,通过纠错练习,对四道题的正确答案进行比较分析得出总结:如果a、b的符号相同,乘积的2倍的符号用“+”;如果a、b的符号相反,乘积的2倍的符号用“—”。使学生对公式的认识从感性认识上升到理性认识,思维从复合阶段前进到明晰阶段。通过对公式的缺项选择填空练习,使学生对完全平方公式的认识进一步升华。
推荐公式推导心得体会报告二
1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解;(重点)
2.掌握平方差公式的应用.(重点、难点)
1.教师引导学生回忆多项式与多项式相乘的法则.
学生积极举手回答.
多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.
2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.
探究点:平方差公式
【类型一】直接应用平方差公式进行计算
利用平方差公式计算:
(1)(3x-5)(3x+5);
(2)(-2a-b)(b-2a);
(3)(-7m+8n)(-8n-7m);
(4)(x-2)(x+2)(x2+4).
解析:直接利用平方差公式进行计算即可.
解:(1)(3x-5)(3x+5)=(3x)2-52=9x2-25;
(2)(-2a-b)(b-2a)=(-2a)2-b2=4a2-b2;
(3)(-7m+8n)(-8n-7m)=(-7m)2-(8n)2=49m2-64n2;
(4)(x-2)(x+2)(x2+4)=(x2-4)(x2+4)=x4-16.
方法总结:应用平方差公式计算时,应注意以下几个问题:
(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;
(2)右边是相同项的平方减去相反项的平方;
(3)公式中的a和b可以是具体的数,也可以是单项式或多项式.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】应用平方差公式进行简便运算
利用平方差公式计算:
(1)20xx×1923;(2)13.2×12.8.
解析:(1)把20xx×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.
解:(1)20xx×1923=(20+13)×(20-13)=400-19=39989;
(2)13.2×12.8=(13+0.2)×(13-0.2)=169-0.04=168.96.
方法总结:熟记平方差公式的结构并构造出公式结构是解题的关键.
变式训练:见《学练优》本课时练习“课堂达标训练”第13题
【类型三】运用平方差公式进行化简求值
先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y-x),其中x=1,y=2.
解析:利用平方差公式展开并合并同类项,然后把x、y的值代入进行计算即可得解.
解:(2x-y)(y+2x)-(2y+x)(2y-x)=4x2-y2-(4y2-x2)=4x2-y2-4y2+x2=5x2-5y2.当x=1,y=2时,原式=5×12-5×22=-15.
方法总结:利用平方差公式先化简再求值,切忌代入数值直接计算.
变式训练:见《学练优》本课时练习“课堂达标训练”第14题
【类型四】平方差公式的几何背景
如图①,在边长为a的正方形中剪去一个边长为b的小正形(a>b),把剩下部分拼成一个梯形(如图②),利用这两幅图形的面积,可以验证的乘法公式是______________.
解析:∵左图中阴影部分的面积是a2-b2,右图中梯形的面积是12(2a+2b)(a-b)=(a+b)(a-b),∴a2-b2=(a+b)(a-b),即可以验证的乘法公式为(a+b)(a-b)=a2-b2.
方法总结:通过几何图形面积之间的数量关系可对平方差公式做出几何解释.
变式训练:见《学练优》本课时练习“课堂达标训练”第9题
【类型五】平方差公式的实际应用
王大伯家把一块边长为a米的正方形土地租给了邻居李大妈.今年王大伯对李大妈说:“我把这块地一边减少4米,另外一边增加4米,继续原价租给你,你看如何?”李大妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
解析:根据题意先求出原正方形的面积,再求出改变边长后的面积,然后比较二者的大小即可.
解:李大妈吃亏了,理由如下:原正方形的面积为a2,改变边长后面积为(a+4)(a-4)=a2-16.∵a2>a2-16,∴李大妈吃亏了.
方法总结:解决实际问题的关键是根据题意列出算式,然后根据公式化简解决问题.
1.平方差公式
两数和与这两数差的积,等于它们的平方差.即(a+b)(a-b)=a2-b2.
2.平方差公式的运用
学生通过“做一做”发现平方差公式,同时通过“试一试”用几何方法证明公式的正确性.通过这两种方式的演算,让学生理解平方差公式.本节教学内容较多,因此教材中的练习可以让学生在课后完成。
推荐公式推导心得体会报告三
1.经历探索平方差公式的过程,会推导平方差公式;
2.能利用平方差公式进行简单的运算。
在探索平方差公式的过程中,发展学生的符号感和推理能力。在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。
激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。
重点
平方差公式的推导和运用
难点
平方差公式的结构特点和灵活运用。
一、复习导入
1.回顾多项式乘多项式的法则。
2.创设情境:你能快速地口算下列式子的值吗?
(1);(2).
师生共同想办法,想到能否把数转化成较整的数?
变形成:,
再试试把它当成多项式乘法来算算,有什么发现?
继续用你发现的方法算算,,,成功了吗?
我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。
二、新课讲解
探究新知
1.观察相乘的两个多项式有什么特点?运算的结果有什么特点?
讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。
2.把式子里具体的数换成字母表示的数,结论还成立吗?
3.从上面的计算中你有什么发现呢?
引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:,这里字母是任意形式的两个数。这个公式叫做平方差公式。
4.你能通过演算推导出平方差公式吗?
最终得到平方差公式:
平方差公式的理解应用
下列多项式乘法中,能用平方差公式计算的是_______________(填写序号)
(1);(2);(3);
(4);(5);(6).
学生分组讨论交流,归纳什么情况下可以使用平方差公式。通过讨论,对平方差公式的理解达到一个新的高度:所谓两数和、两数差,从多项式的角度来看,就是有一项相同(),有一项相反(和),只要相乘的两个多项式具备这样的特点,都可以用平方差公式计算。不难判断,上面的式子中(2)、(5)、(6)都可以用平方差公式计算。
三、典例剖析
例1运用平方差公式计算:
师生共同解答,教师板书。初学运用时要写清楚步骤。
例2运用平方差公式计算:
学生解答,关注学生是否理解平方差公式,能否正确识别乘法公式里的。
例3.计算:
学生解答,教师巡视,关注学生能否合理变形,灵活运用公式计算。
四、课堂练习
1.下面各式的计算对不对?如果不对,应怎样改正?
(1);
2.运用平方差公式计算:
(1);(2);
(3);(4).
3.计算:
(1);(2);
教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。
五、小结
师生共同回顾平方差公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
p50第1、6题
推荐公式推导心得体会报告四
零、随机数
1、随机数函数:
=rand
首先介绍一下如何用rand函数来生成随机数(同时返回多个值时是不重复的)。rand函数返回的随机数字的范围是大于0小于1。因此,也可以用它做基础来生成给定范围内的随机数字。
生成制定范围的随机数方法是这样的,假设给定数字范围最小是a,最大是b,公式是:=a+rand*(b-a)。
举例来说,要生成大于60小于100的随机数字,因为(100-60)*rand返回结果是0到40之间,加上范围的下限60就返回了60到100之间的数字,即=60+(100-60)*rand。
2、随机整数
=randbetween(整数,整数)
如:=randbetween(2,50),即随机生成2~50之间的任意一个整数。
上面rand函数返回的0到1之间的随机小数,如果要生成随机整数的话就需要用randbetween函数了,如下图该函数生成大于等于1小于等于100的随机整数。
这个函数的语法是这样的:=randbetween(范围下限整数,范围上限整数),结果返回包含上下限在内的整数。注意:上限和下限也可以不是整数,并且可以是负数。
推荐公式推导心得体会报告五
日期计算公式
1、两日期相隔的年、月、天数计算
a1是开始日期(20xx-12-1),b1是结束日期(20xx-6-10)。计算:
相隔多少天?=datedif(a1,b1,"d") 结果:557
相隔多少月? =datedif(a1,b1,"m") 结果:18
相隔多少年? =datedif(a1,b1,"y") 结果:1
不考虑年相隔多少月?=datedif(a1,b1,"ym") 结果:6
不考虑年相隔多少天?=datedif(a1,b1,"yd") 结果:192
不考虑年月相隔多少天?=datedif(a1,b1,"md") 结果:9
datedif函数第3个参数说明:
"y" 时间段中的整年数。
"m" 时间段中的整月数。
"d" 时间段中的天数。
"md" 天数的差。忽略日期中的月和年。
"ym" 月数的差。忽略日期中的日和年。
"yd" 天数的差。忽略日期中的年。
2、扣除周末天数的工作日天数
公式:c2
=(if(b2
说明:返回两个日期之间的所有工作日数,使用参数指示哪些天是周末,以及有多少天是周末。周末和任何指定为假期的日期不被视为工作日
推荐公式推导心得体会报告六
查找与引用公式
1、单条件查找公式
公式1:c11
=vlookup(b11,b3:f7,4,false)
说明:查找是vlookup最擅长的,基本用法
2、双向查找公式
公式:
=index(c3:h7,match(b10,b3:b7,0),match(c10,c2:h2,0))
说明:利用match函数查找位置,用index函数取值
3、查找最后一条符合条件的记录。
公式:详见下图
说明:0/(条件)可以把不符合条件的变成错误值,而lookup可以忽略错误值
4、多条件查找
公式:详见下图
说明:公式原理同上一个公式
5、指定区域最后一个非空值查找
公式;详见下图
说明:略
6、按数字区域间取对应的值
公式:详见下图
公式说明:vlookup和lookup函数都可以按区间取值,一定要注意,销售量列的数字一定要升序排列。
推荐公式推导心得体会报告七
本节课是围绕“引导学生有效预习”的课题设计的,通过预设的问题引发学生思考,在学生的预习基础上回答相关的问题,产生对整式的乘法、提公因式法和公式法的对比。
让学生充分自主的对知识产生探究,同时利用数形结合的思想验证平方差公式;再通过质疑的方式加深对平方差公式结构特征的认识,有助于让学生在应用平方差公式行分解因式时注意到它的前提条件;通过例题练习的巩固,让学生把握教材,吃透教材,让学生更加熟练、准确,起到强化、巩固的作用,让学生领会换元的思想,达到初步发展学生综合应用的能力。
本节课是运用提公因式法后公式法的第一课时——用平方差公式法分解因式。它是整式乘法的平方差公式的逆向应用,它是解高次方程的基础,在教材中具有重要的地位。在教材的处理上以学生的自主探索为主,在原有用平方差公式进行整式乘法计算的知识的基础上充分认识分解因式。明确因式分解是乘法公式的一种恒等变形,让学生学会合情推理的能力,同时也培养了学生爱思考,善交流的良好学习惯。
本课程所教授的学生程度相对较好,学生已经学习了乘法公式中的平方差公式,本节课是整式乘法的平方差公式的逆向应用,学生在前一阶段的学习中掌握效果较好,为本节课的教学奠定了良好的基础。同时初二的数学教学以“引导学生有效预习”为小课题,学生已经建立较好的预习习惯,为本节课的难点突破提供了先决条件。但是学生的预习与课堂的学习仍需要教师的合理引导和有效掌握,对一些相对落后的学生来说应注重突出重点,分析透彻,所以在教学时充分考虑到学生已经掌握平方差公式的前提,通过问题引发学生思考,提高学生兴趣入手,培养学生的自主探索,合作交流的能力,在轻松的氛围中完成教学任务,从而增强学好数学的愿望与信心
(一)知识与技能
1.掌握运用平方差公式分解因式的方法。
2.掌握提公因式法、平方差公式分解因式的综合应用。
(二)过程与方法
1.经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
2.通过乘法公式:(a+b)(a-b)=a2-b2逆向变形,进一步发展观察、归纳、类比、概括等能力,发展有条理地思考及语言表达能力。
3.通过活动4,将高次偶数指数向下次指数的转达化,培养学生的化归思想。
4.通过活动1,发现并归纳出因式分解的又一方法:逆用整式乘法的平方差公式,得到a2-b2 =(a+b)(a-b)。
5.通过活动4,让学生自己发现问题,提出问题,然后解决问题,体会在解决问题的过程中与他人合作的重要性。
(三)情感与态度
1.通过探究平方差公式,让学生获得成功的体验,锻炼克服困难的意志,建立自己信心。
您可能关注的文档
- 2023年教师随心得体会报告(实用11篇)
- 最新北海拓展心得体会简短(模板8篇)
- 2023年学习口腔心得体会和方法(实用17篇)
- 2023年操作实习心得体会及感悟(大全20篇)
- 最新历史阅卷心得体会简短(通用8篇)
- 外贸谈判心得体会和感想 外贸公司实践心得体会(六篇)
- 2023年石油运输心得体会和感想(优秀9篇)
- 小学教师个人年度考核个人总结(优质9篇)
- 最新自由游戏心得体会报告(优秀17篇)
- 最新网页实习心得体会(精选12篇)
- 探索平面设计师工作总结的重要性(汇总14篇)
- 平面设计师工作总结体会与收获大全(20篇)
- 平面设计师工作总结的实用指南(热门18篇)
- 免费个人简历电子版模板(优秀12篇)
- 个人简历电子版免费模板推荐(通用20篇)
- 免费个人简历电子版制作教程(模板17篇)
- 学校贫困补助申请书(通用23篇)
- 学校贫困补助申请书的重要性范文(19篇)
- 学校贫困补助申请书的核心要点(专业16篇)
- 学校贫困补助申请书的申请流程(热门18篇)
- 法制教育讲座心得体会大全(17篇)
- 教育工作者的超市工作总结与计划(模板18篇)
- 教学秘书的工作总结案例(专业13篇)
- 教师的超市工作总结与计划(精选18篇)
- 单位趣味运动会总结(模板21篇)
- 礼品店创业计划书的重要性(实用16篇)
- 消防队月度工作总结报告(热门18篇)
- 工艺技术员工作总结(专业18篇)
- 大学学生会秘书处工作总结(模板22篇)
- 医院科秘书工作总结(专业14篇)