手机阅读

方程求解心得体会总结 解方程的心得体会(5篇)

格式:DOC 上传日期:2023-01-09 13:43:25 页码:14
方程求解心得体会总结 解方程的心得体会(5篇)
2023-01-09 13:43:25    小编:ZTFB

当在某些事情上我们有很深的体会时,就很有必要写一篇心得体会,通过写心得体会,可以帮助我们总结积累经验。那么心得体会该怎么写?想必这让大家都很苦恼吧。下面我给大家整理了一些心得体会范文,希望能够帮助到大家。

关于方程求解心得体会总结一

1.教材的地位和作用

二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

2.教学目标

知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

3.重点、难点

重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

难点:在实际生活中二元一次方程组的应用。

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?

设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,

胜场积分+负场积分=总积分。

这两个条件可以用方程

x+y=10

2x+y=16

表示:

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

把两个方程合在一起,写成

x+y=10

2x+y=16

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知

满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

x xy

y

上表中哪对x、y的值还满足方程②。

一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。

(4)分析思考,加深理解

通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。

(5)强化训练,巩固双基

课堂练习:

设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。

练习2:已知下列三对数值:

哪一对是下列方程组的解?

(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

(6)小结归纳,拓展深化

我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:

①通过本节课的学习,你学会了哪些知识;

(7)布置作业,提高升华

教科书第89页1、第90页第1题。

以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。

以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。

本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:

1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。

2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。

3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的`过程在情感和态度的形成和发展。

关于方程求解心得体会总结二

1、基础知识的培养要求:

(1)了解角的相关概念及垂直的概念.

(2)了解平面直角坐标系的概念,掌握一次函数和它的图象,并会求解析式.

(3)了解平行线的性质和判定,并应用其解题.

(4)会解二元一次方程组,能根据具体问题中的数另关系列出二元一次方程组并求解。

(5)了解确定事件与不确定事件的概念,并会判定哪些是确定事件或不确定事件。

(6)了解正整数幂的运算性质并会运用它们运算.

(7)了解单项式与多项式,多项式与多项式相乘的法则

(8)了解三角形的内角、外角及其外角等相关概念.

(9)了解圆的相关概念并会画圆.

2、基本技能、能力的培养要求:

(1)、学会利用转化的思想方法解决问题。

(2)、培养学生从具体到抽象,从特殊到一般的抽象概括能力。

(3)、培养学生分类的数学思想,学会类比的数学观念。

(4)、体验数形结合思想方法。

(5)、培养学生的自学能力,提高课堂效率。

(6)、培养推理论证能力。

关于方程求解心得体会总结三

1、本章的主要内容:

(1)一元二次方程的有关概念;

(2)一元二次方程的解法,根的判别式及根与系数的关系;

(3)实际问题与一元二次方程。

2、本章知识结构图:

3、教学目标:

(1)以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念;

(2)根据化归的思想,抓住“降次”这一基本策略,掌握配方法、直接开平法、公式法和因式分解法等一元二次方程的基本解法;

(3)经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用方程这种重要数学工具的基本能力。

4、本章的重点与难点

本章学习的重点:一元二次方程的解法及应用一元二次方程解决实际问题。

难点:

(1)分析方程的特点并根据方程的特点选择合适的解法;

(2)实际背景问题的等量分析,设元列一元二次方程解应用题。即建立一元二次方程模型解决实际问题,尽管已经有了运用一次方程(组)解应用问题的经验,但由于实际问题涉及的内容广泛,有的背景学生不熟悉,有的问题数量关系复杂,不易找出等量关系。同时,还要根据实际问题的意义检验求得的结果是否合理。

1、重视一元二次方程与实际的联系,再次体现数学建模思想。

方程是刻画现实世界的有效数学模型,因而方程教学关注方程的建模过程。教科书的第1节就是想通过多种实际问题的分析,经历模型化的过程,并在此基础上抽象出数学概念。当然,在教学中除教科书第1节、第5节提供了大量的实际问题外,教师还应根据学生生活实际和认知水平,创设更为丰富、贴近学生的现实情景,并引导学生分析其中的数量关系,建立方程模型。在经历多次这样的数学活动,使学生感受到方程与实际问题的联系,领会数学建模思想,增强学生学习数学的兴趣和应用意识,培养学生分析问题、解决问题的能力。

2、本章为学生提供了许多活动,教学中应让学生进行充分的探索和交流。

如在一元二次方程解法的教学中,教师不要采用先示范,然后让学生模仿的方法,而应通过恰当的引导,鼓励学生先独立探索解法,并相互交流。在一元二次方程应用的教学中,应鼓励与提倡解决问题策略的多样化,学生的解法只要合理,就给以肯定,不必拘泥于教科书的解法。

3、注重数学思想方法的渗透。

数学是以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从现实世界中抽象出来的,这样的抽象是一个逐步深入的过程。方程是含有未知数的等式,它们表达了数量之间的相等关系。正如前面所学习过的其他方程,一元二次方程可以表达许多实际问题中包含的数量相等关系,因而也可以作为分析和解决这些问题的重要数学模型。从反映方程与实际问题的密切联系的角度看,本章与本套教科书前面有关方程的各章是一脉相承的,实际问题情境始终贯穿于本章之中。

这就是所谓的“数学化”过程,其中渗透了符号化和数学建模思想,列方程解决实际问题时,要首先分析题意,找出题中的等量关系。分析过程中,借助示意图或表格常常能使抽象的数量关系具体化、形象化,把数与形结合起来是解决数学问题的一个有效的思想方法。

解一元二次方程的每一种方法都渗透着“转化”思想。开平方法、因式分解法通过“降次”,把一元二次方程转化成两个一元一次方程来解;配方法把方转化成的形式,这是数学形式的转化;而公式法直接利用公式把方程中的“未知”转化为“已知”。这种思想,学生可以运用旧知识来解决新问题,把“不会”变为“会”,它在将来学习二次函数、二次不等式等知识时具有广泛的应用,在教学中,教师应注意引导学生体会这种思想。

4、重视一元二次方程的特殊性,突出解一元二次方程的基本策略以及解法中的关键步骤。

在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),并且学习了可以化为一元一次方程的分式方程,他们对于解方程的基本思路(使方程逐步化为的形式)已经比较熟悉,按照这种思路可以继续考虑一元二次方程的解法。

一元二次方程与前面的方程相比,特点在于未知数的次数是2(二次),新的问题是如何将一元二次转化为学过的一元一次方程,这就是“降次”及“转化”的思想。

5、注意把握教学要求。

在一元二次方程解法的教学中,应避免过多地求解没有实际背景的一元二次方程,进行单纯的形式化的重复操练,应注意将知识技能的培养寓于实际应用问题的解决过程中。

关于一元二次方程根的判别式、一元二次方程根与系数的关系,根据《课标》要求,教学中只做适当的补充。

22.1一元二次方程:

本节1课时,以实际问题为背景,引出一元二次方程的概念,归纳出一元二次方程的一般形式;给出一元二次方程根的概念,并提出一元二次方程的根是两个;根据方程的根与方程的关系,再次理解代入法。

教学目标:通过实际问题了解一元二次方程的定义及一般形式;会将一个整式方程化为一元二次方程的一般形式,并能指出二次项及二次项系数、一次项及一次项系数和常数项。

教学重点:一元二次方程及有关概念的理解。

教学难点:准确的化为一元二次方程的一般式,将根代入原方程这种数学方法的理解。

教、学法建议:课前让学生完成自学内容。

(1)一元二次方程的定义关键点:整式方程、只含一个未知数、未知项最高次数为2。

(2)对一元二次方程定义的理解时,一定注意“a≠0”这一条件。

(3)用列举法探索一元二次方程的根是对一元二次方程精确求解的一种探索和补充,在教学中让学生独立尝试,强调学生的自主学习,注重合作交流,提高学生观察、分析和创新的能力。

注意点:①当a是负值时,一般转化为正数;

②增加b=0或c=0或b、c同时为0的特例;

③注意联系实际学习,避免就概念理解概念。

22.2降次---解一元二次方程

直接开平方法、配方法、公式法和因式分解法是一元二次方的基本解法,解二次方程的基本策略是降次。首先通过简单的一元二次方程,引导学生认识直接开平方法解方程;然后讨论比较复杂的一元二次方程,通过对比已变为完全平方式的方程,使学生认识配方法的基本原理并掌握其具体方法;以配方法为基础推导一元二次方程的求根公式,于是得到公式法。最后讨论因式分解法。

教学目标:理解和掌握一元二次方程的四种解法:直接开平方法、配方法、公式法、因式分解法。

教学重点:一元二次方程的解法。

教学难点:针对不同方程,选择合适的解法。

教、学法建议:

(1)直接开平方法:初二已学过平方根和算术平方根,学习时注意由浅入深进行。

(2)配方法:配方法在数学中成为一种很重要的数学变形,它隐含了创造条件实现化归的思想,这种思想对培养学生的数学能力影响很大。在教学中,对配方法和划归思想应充分重视,给学生提供充足的时间探索,充分的合作交流时间和空间,引导学生理解这种方法的道理,结合道理去记忆配方的具体步骤。

(3)公式法:根据配方法推导求根公式,以配方法为基础,引导学生自己探索求根公式,不可直接抛出公式让学生模仿着用。强调“当”是根据非负而产生的。教学时总结出公式法解题的一般步骤:化为一般式;指出a、b、c,带符号;写出求根公式;代入求解。在公式法之后进行归纳,总结根的判别式对应的一元二次方程根的三种情况:

①有两个不等的实数根;

②有两个相等的实数根;

①②合称为由实数根,③没有实数根,但不能说没有根。

(4)因式分解法:新课标已把这部分的内容降要求了,所以,不要再提高复杂度,只要求学生能掌握:三类。当然,有余力的可稍作变式。另外,对于二次项系数为1的简单的十字相乘法一点补充。

第一课时,安排可直接提公因式类型

第二课时,安排需要整理后方可因式分解类型,及简单的十字相乘法。

(5)一元二次方程根的判别式:这是中山的补充教学的内容,在教学时主要让学生知道根的判别式的作用及进行简单的应用。

(6)一元二次方程根与系数关系:这是中山的补充教学的内容,在教学时主要让学生知道根的判别式的作用及进行简单的应用。

根据中山中考命题的特点,在进行完根的判别式与根与系数的关系的简单知识的教学之后再上一节习题课,目的是让学生懂得利用知识解决较为综合的问题。

注意点:

①以解决实际问题背景为线索安排解法学习,方法步骤多由学生归纳总结。

②配方法、公式法都应先判断是否为一般形式,小心符号错误或混淆

③因式分解法没注意方程没有写成a·b=0形式,要讲解原理

④形如:,学生会约分,造成丢根。

⑤对一个方程,应先鼓励学生分析方程特点,对解法发表自己的意见,体会数学思想方法的作用,逐步养成主动探究和应用的习惯。

22.3实际问题与一元二次方程

一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

本章教学约需14课时,具体分配如下:

§22.1一元二次方程 1课时

§22.2一元二次方程的解法5课时

一元二次方程的根的判别式1课时

一元二次方程的根与系数的关系2课时

§22.3一元二次方程的应用2课时

§小结2课时

单元测验1课时

关于方程求解心得体会总结四

教学目标

知识与能力

结合操作活动进一步理解方程的意义。

过程与方法

会用含有未知数的等式表示等量关系。

情感、态度与价值观

感受方程与现实生活的密切联系,体验数学活动的探索性。

重点、难点

重点

理解方程的意义,会用含有未知数的等式表示等量关系。

难点

理解方程的意义。

教学准备

教师准备:

多媒体

学生准备:

练习本

教学过程

(一)新课导入:复习导入

1.出示:下面式子哪些是方程,并说明理由?

6+x=14 36-7=29 60+2370 8+x

x+414 ÷18=3 3x-12 5x+2x=63

2、写一个方程,然后在小组里交流,说说什么是方程。进一步巩固理解方程的意义。

设计意图:整理上节课学习的知识,进一步巩固学生对方程意义的理解。

(二)探究新知:

1.联系实际,应用拓展

师:看来同学们理解了方程的意义,掌握了方程的特征,其实方程就隐含在我们的生活中,人们发现在我们的衣食住行中,有很多问题都能用方程的方法来解决。试试看!(出示)

衣:妈妈带50元钱给我买了一件t恤后,还剩下26元。

食:小强去麦当劳,买了一袋薯条和一个l0元的汉堡,一共用了l5元。

住:同学们参加社会实践活动,3个人住一个房间,多少个房间能住102人?

行:公交车上有一些人到谢家湾站时,有13人下车,18人上车,车上还剩36人。

师:你想试哪一个?

生1:我想试“衣”。(生读题)

师:能用方程来表示吗?先写在练习本上,再想一想未知数代表的是什么?

生2:x+26=50

生3:50-x=26

师:这是方程。

生4:x代表t恤的价钱。

生5:我想试“食”。 我是这样写的x+10=15,x代表的是一袋薯条的价钱。

生6:我想试试“行”。

师:你能直接口答吗?

生7:x-13+18=36,x代表的是车上原有的人数。

生7:我想说最后一个“住”。102÷3=x,x代表的是房间数。

师:习惯上都把未知数写在等号的左边。也可以这样表示3x=102

师:刚才我们用方程表达了日常生活中的衣食住行问题,同样,也可以用日常生活来描述方程。

2.(出示)结合生活中的事例解释方程。

①+19=54

②x-14=36

③z-13十15=37

师:选择自己喜欢的来说。

生1:我想说第2个,我有一些钱,买学习用品花了14元,还剩36元。

师:真是个爱学习的好孩子。

生2:我想说第1个,我有一些零花钱,妈妈又给了我19元,一共有54元。

师:要学会合理使用零花钱。

生3:我想说第3个,公交车上有一些人到百货大楼站时,有10人下车,12人上车,车上还剩30人。

师:先下后上,文明乘车。

……

师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来学习了,很好!

设计意图:将数学知识与生活相联系,是学习数学的目的所在。也使学生学习数学的过程中形成技能。在教学中要保证每个学生参与学习活动,针对学习目标和教学重点,具有层次性和开放性,注重教学的实效性。

(三)巩固新知:

1.出示情境图,学生独立完成。说说列出方程的等量关系。

小丽背80首古诗,小芳背x首古诗,小芳说:你比我少背5首

学生能够列出:小芳背古诗首数-5=小丽背古诗首数

或:小芳背古诗首数-小丽背古诗首数=5

即:x-5=80

或:x-80=5

学生同桌交流,说说自己的想法,然后,全班订正。

2.出示自主练习3。

这是一个结合具体情境理解方程意义的题目。

先让学生独立填写等量关系式并列出方程,交流时,重点引导学生结合示意图说说数量关系。

设计意图:加深理解所学的知识,应用所学的知识灵活解决实际问题。

(四)达标反馈

1.下列各式那些是等式?

①45+32=77 ②5÷x=12 ③3x-4=22 ④2×21=42

⑤a+b=90 ⑥÷6

2.按要求写一写。

关于方程求解心得体会总结五

1、 一元一次方程的解(重点)

2、 一元一次方程的应用(难点)

3、 求解一元一次方程及其在实际问题中的应用(考点)

(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

如果a=b,那么ac=bc;

如果a=b且c≠0,那么

(4)运用等式的性质时要注意三点:

①等式两边都要参加运算,并且是作同一种运算;

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

③等式两边不能都除以0,即0不能作除数或分母。

1、解一元一次方程——合并同类项与移项

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 x=a(a 常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a(a是常数) 的形式。

2、解一元一次方程——去括号与去分母

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(3)工作总量=工作效率×工作时间。

(4)工作量=人均效率×人数×时间。

(1)售价指商品卖出去时的的实际售价。

(2)进价指的。是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

(6)产油量=油菜籽亩产量×含油率×种植面积。

(7)应用:行程问题:路程=时间×速度;

工程问题:工作总量=工作效率×时间;

储蓄利润问题:利息=本金×利率×时间;

本息和=本金+利息。

您可能关注的文档