手机阅读

大数据介绍心得体会报告 大数据的感想和总结(六篇)

格式:DOC 上传日期:2022-12-29 11:32:55 页码:7
大数据介绍心得体会报告 大数据的感想和总结(六篇)
2022-12-29 11:32:55    小编:ZTFB

体会是指将学习的东西运用到实践中去,通过实践反思学习内容并记录下来的文字,近似于经验总结。我们想要好好写一篇心得体会,可是却无从下手吗?以下是我帮大家整理的最新心得体会范文大全,希望能够帮助到大家,我们一起来看一看吧。

有关大数据介绍心得体会报告一

1、与客户沟通,理解、细化客户的数据分析需求,了解客户对数据需求背后的目的,更好地为客户提供解决方案。需求范围包括:企业网络舆情、品牌网络口碑、消费者洞察、社会化运营数据、产品体验和创新等;

2、根据商业背景和相关行业背景,搭建清晰的研究框架,设计研究方案,将客户需求落地;

3、基于多维大数据以及不同数据特点,使用公司自有大数据分析工具,洞悉数据背后的信息,满足客户的分析需求;结合自身和团队的研究经验,基于数据洞察结果提出合理的解决方案和意见,提升数据价值;

4、承担分析报告撰写的主笔工作。

任职资格:

1、本科以上学历;

2、有3年以上的咨询公司、广告/公关公司或大型企业市场研究或用户研究部门工作背景;

3、对制造、快消、互联网、零售等行业及商业模式有一定的了解,对数据有较高的敏锐性;

4、具备数据操作能力,熟练使用excel,熟练使用spss等至少一种统计软件;

5、具备独立完成ppt制作,报告撰写能力;

6、良好的英文写作能力,能撰写英文分析报告;

7、良好的沟通与表达能力,能与客户对接需求。

有关大数据介绍心得体会报告二

高校教育大数据的分析挖掘与利用

摘 要,本文从高校教育大数据的汇聚融合与挖掘应用的角度,分析了如何运用教育大数据技术推动大学管理和人才培养的创新改革的思路和方法。首先,分析了教育大数据对高校现代化、精细化、规范化管理的4个价值,其次,给出了高等教育大数据技术平台的基本技术架构,第三,结合教育大数据实际应用,介绍了陕西省高等教育质量监管大数据中心、mooc中国、西安交通大学教学质量综合监控与评价三个典型案例,最后,提出了教育大数据分析挖掘中的3项基础性关键技术

关键词,高等教育,大数据,分析,挖掘

高校大数据分析挖掘至少有四个典型价值, 一是使得大学的管理更加精准高效,可以朝着智慧治理、分类管理、过程监控、趋势预测、风险预警的方向发展,真正实现基于大数据分析规律的精准治理,改变管理的模糊性, 二是可以更加准确地分析评价课堂教学的质量,过去我们对课堂、对老师的评价是定性和模糊的,而在大数据智慧课堂的模式下,可以真正实现采集样本的持久化,采集方式

的多元化,挖掘手段的多样化,分析技术多维度,通过这些方式可以提高课堂教学的质量, 三是使得教和学更加智慧,更加有效。对学生来说,老师可以了解学生学习的进展情况,发现学习兴趣点,以及对老师讲的哪些内容理解或者不理解,学习路径分析及课程推荐等等。对教师而言,不仅可以跨校跨地域分享他人的优秀课程,而且可以对学习者进行精准分类,进行个性化指导, 四是资源服务的个性化、精准化推荐与服务,学习绩效的个性化评价,以及个性化教学管理,个性化手机内容推送等等,这些功能将有效提升教与学的效率和质量

首先,我们对高等教育大数据技术平台有一个总体的顶层设计,如图1所示。这不仅是学校自己要有一个大数据的管理平台或者是数据中心,而且也是面向区域乃至全国的平台。教育部评估中心正在努力建立国家级高等教育教学质量监控大数据中心,陕西省也是这样考虑的。数据来自高校、教育管理部门以及行业、第三方、企业用人单位等等各方面采集的数据,该数据平台既有大学的业务数据、课程资源,也有政府部门的统计数据,还有学生网上学习的日志数据,用户产生的ugc数据,比如微信、微博、论坛等等的数据,基于大数据平台,开展面向学习者、面向高等教育管理机构、教师、高校等提供服务,并和教育部评估中心、主管部门等

进行数据交换与对接

显然,这样一个大数据平台必须是一个高性能的计算平台,没有这样的基础设施一切无从谈起,所以去年我们学校花了很大的力气做了两件事,一个是把校内二级单位原来小的集群计算进行整合,形成学校统一的高性能云计算平台,既面向校内的科学研究、人才培养提供服务,其实也可以为社会提供合作共建共享模式。目前,我们已建立了一种自我造血机制,四两拨千斤,以这个平台吸引更多的外部资源,努力扩展平台的性能和应用

目前,我校的高性能平台除了应用于材料、航天、能动、信息等大型科学计算之外,还开展了以下三项典型的大数据应用

案例1,陕西省高等教育质量监控与评估大数据应用

图2所示的是陕西省高等教育的整体架构。其数据基础是来自陕西省100多所高校的各种办学状态数据,有将近700个表格,以及陕西省教育厅各个职能部处的各种各样的管理数据,此外还有行业第三方提供的数据,包括招生、就业数据等等,这个平台上我们开展预测预警、查询在线分析、信息发布、统计决策等等,主要是为省级教育管理部门、评估机构、教育管理机构提供各种各样的办学状况的分析、统计、关联分析

建设全省高等教育大数据服务平台,实时采集各高校的办学状态数据,其根本目的是为了汇聚全省各高校的办学状态数据,打破数据孤岛,融合各方数据,实现横向关联比较、纵向历史分析,提供精准服务,支持科学决策

首先,该平台面向省教育厅提供了11项功能,从根本上解决了原来各处室间的数据孤岛的问题,实现了数据融合,横向关联,纵向融通,这个数据和各个高校是实时融通的,为省教育厅领导和职能部处提供了领导仪表盘、各职能处室的专项服务、81张高基表及年报年鉴表格的自动生成、绩效分析、招生就业及办学指标计算、教育评估等功能,从根本上解决了数据碎片化及其治理问题

其次,面向全省高校辅助决策,为高校领导以及校内各个职能部处提供了系列功能,包括办学情况综合分析和在线查询,专业结构分析比较,校级的教学质量监控评测体系,教师管理等等,这些功能非常实用,这是大学实现精细化、规范化、现代化管理的必备基础。以我校为例,我们过去教师的数据可能在人事处、教务处、科研院等学校的职能部门,采取本平台以后,把教师有关的所有数据都进行了融合,打通了所有原来割裂的数据。从去年开始,我们学校的职称评聘,年度考核全部基于这一平台,全部在大数据里,建立健全了基于数据驱动的精准化服务,解决了数据碎片化历史遗留问题,实现了从管理信息化向服务信息化的根本转变

第三,为本科教育教学评估及专业认证提供技术支撑。鉴于本平台能提供比较全面的高校办学状态数据,便于专家在进校之前全面系统地掌握学校办学的情况,找到问题,精准查看验证,提高效率,给高等教育评估提供了重要支持。基于本平台,我们成立了中国西部高等教育评估中心,接受陕西省教育厅指派的省属本科高校的审核评估和专业论证。如果没有这一高等教育大数据平台的支撑,工作量和难度是极其巨大的,甚至难以实现

案例2,mooc中国技术平台

mooc中国成立于2015年1月,到目前为止已经有121所高校加入,理事单位40家,会员单位80家。该平台的宗旨是,做政府想做的,做社会愿意做的,做单一高校做不了的事情。例如,真正解决校际资源共享、学分互认等,开拓远程教育国际化等未来发展的难题。 图3给出了mooc中国的技术框架。其核心是互联网+教育,实现互联网教育从1.0到2.0的升级。基于这一平台,既要开展网络教育业务的国际化,比如我们牵头成立的“丝路大学联盟”,其目的之一是借助mooc中国平台,实现网络教育业务的国际化,通过mooc中国平台,面向“一带一路”国家开展开放教育和技能培训

到目前为止,mooc中国已经有了9911门课程,用户将近600万,其中光it培训的有500多万,学历教育在读

学生50多万

案例3,西安交大教育教学大数据分析挖掘与应用

学校非常重视教育信息化技术融入和应用到教育教学之中,去年一次性建成了80个智能教室,把物联网技术、云计算技术应用于智能教室和教学一线,基于物联网技术实现教室设备的集中管理、智能控制,同时,将互联网技术深度融入到教室的管理当中,除了多媒体的直播录制功能以外,还提供了学生考勤和专家的精准督导,通过云平台来集中管理各个教室,比如说开投影机、关电源、关多媒体设备等等,都可以通过后端的云平台集中管控,真正实现教室管理的数字化、智能化、精细化,提升了教学保障的能力,也大大提高了教室管理的效率。更重要的是,这些教学的过程数据可以全程采集下来,获得数据,有了这些数据,就可以做精准化分析服务,建立西安交大教学质量大数据监测中心 目前,我校的教学大数据主要包括两大部分,一是教师在授课过程中的全程录制的课堂实况,二是学生在学习过程中产生的大量日志数据。基于这个平台,我们可以开展教育教学的大数据关联分析,开展课堂教学质量的综合评价,实现正面激励、负面惩戒、精准督导,实现教学评价从模糊宏观到量化精准、从每学期制到持续常态、从部分随机到全面覆盖、从事后评价到实时动态的根本转变。通过评价激励老师敬畏课堂,评选精品课堂、示范课堂,在全校内进行正面

表彰,另外也作为教学质量评价的重要依据,包括教师的职称晋升,评选最喜爱的老师等等

此外,本系统还为学院领导和管理部门提供了针对性的信息服务与决策支持,以数据说话,量化分析,改变了以前我们的模糊评价,采取多维度、全覆盖、持续化、精细化的过程评价与监控

首先,介绍一下大数据人工智能的基本原理。前段时间,alphago战胜世界围棋冠军这一故事炒得很热。这对我们的教育科研工作者提出了一个重要的课题,到底人工智能会不会战胜人类的智能,将来教师存在的主要价值是否还有必要,863计划正在研究一个项目,到2020年,人工智能软件参加高考得分要超过一本线,这就是说,计算机教出来的机器软件参加高考都能达到一本线以上。这就引起我们的思考,这是一个深层次的方向性问题。当然我们今天不是谈这个问题,而是我们要看看alphago的原理,其核心是价值计算函数,用收益函数来判断围棋下一步该落子到哪里其收益是最大的,其中采用了人工智能深度学习方法。alphago并非天生聪明,其实他的智慧是分三步完成的, 第一步,给alphago输入了3000万个人类围棋高手的棋谱和走法,任何一个人是不可能记住3000万个棋局的,只有人工智能才能记住 第二步,alphago自己和自己对弈,在对弈过程中找到自己的薄弱点,进而改进和完善,这其实和人的学习原理类似

第三步,才是人机对弈,从职业选手到世界围棋冠军,通过这样不断的对弈完善算法,校正学习,使得alphago具有强大的智能计算能力。alphago的难点在哪,其关键在于在一个巨大的落子空间选一个最大的收益点,或者落子点,称之为movepicker,,函数,这个空间很大,有10170次方,在如此庞大的计算空间中选择最优函数,只能依靠高性能计算平台

alphago为我们研究大数据问题提供了思路和启发。我们在研究教育大数据问题中需要着力攻克以下理论与技术难题

第一,大数据造成了严重的认知碎片化问题。比如,大家在百度搜糖尿病会检索出4440万个数据源,谁也看不过来,并且里面还有一大堆真假难辩的数据。所以,碎片化知识的聚合是一个非常基础的难题,高度的碎片化降低了知识的可用性,造成了分布性、动态化、低质化、无序化等典型的问题

一方面是知识的碎片化,另一方面是每个人的兴趣和需求还不一样。所以,资源的碎片化整合以及个性化推荐是今后人工智能中的关键问题。我们的思路是,一方面,我们要

从资源的角度把无序、分散、低质的资源进一步重组以后形成知识点,形成有序的知识地图,另一方面,要对学习过程进行跟踪,实现兴趣、个性、情感等方面的动态分析与挖掘,两者结合起来,建立基于用户兴趣和个性的资源推荐,最后实现个性化精准过滤,通过知识地图面向用户提供导航学习,从而缓碎片化知识的问题。开展这一研究也要建立庞大的基础数据,就像刚才讲的alphago,光靠智能软件肯定不可能那么聪明,需要建立庞大的知识地图、知识图谱,并将其放到了国际开源社区和开放数据平台之上 第二,碎片化知识的聚合问题。其目的是解决“既见树木,又见森林”的问题,破解“学习迷航”、“认知过载”的问题。我们正在承担国家自然科学基金重点项目,研究如何将多源、片面、无序的碎片化知识聚合成符合人类认知的知识森林,找出主题与主题之间的认知关系,最后形成一个知识森林,其中需要解决主题分面树的生成、碎片化知识的装配、知识森林生成、学习路径选择与导航等有关知识地图、知识图谱构建与应用等许多基础性关键技术

第三,学习行为的分析和挖掘技术。网上学习最大的好处我们可以把教师和学生所有的教与学的行为记录下来,讨论、作业、习题、笔记及进度记录下来,有了这些数据,我们可以进行后续分析,开展学习行为的特征识别和规律发现等等,既可以跟踪挖掘某个个体的学习规律,也可以找出一

个群体、一个小组的特征和规律。针对不同的课程,开展课程点击率、学习人群、知识关注点、学习时间等的分析与跟踪,刻画一个学生学习的过程,从时间、空间和课程知识导航的角度,甚至围绕某个知识点,研究学习者的特征、行为、交互等相互之间的关系,为老师深化课程改革、探索以学生为中心的教学设计具有非常重要的意义

教育是全人类、全社会发展的基础性事业,随着互联网+技术全面渗透和深度融入教育教学,不仅产生了大量的课程资源和学习内容,而且还产生了巨量的教育教学管理数据、行为数据、服务数据,蕴藏着巨大的价值,亟需我们开展深入研究,可谓前景广阔,挑战巨大,

,编辑,王晓明,

有关大数据介绍心得体会报告三

职责:

1、负责公司的大数据平台的数仓架构、系统架构设计;

2、负责带领团队完成舆情分析相关的挖掘方案设计;

3、负责大数据研发组团队管理;

4、负责带领团队完成舆情平台的方案文档撰写、迭代开发;

5、负责研发规范制定,研究行业前沿技术;

6、参与产品规划及设计讨论。

任职要求:

1、本科五年工作经验及以上,有至少五年的大数据技术实践经验,有nlp或ai相关经验;

2、有很强的架构设计能力和良好的表达能力;

3、有一定的项目管理及团队管理能力;

4、精通hadoop、spark生态圈中的常用组件原理及应用;

6、理解媒体业务,精通数据仓库的规划和设计;

5、精通掌握java或python编程,有性能调优能力;

4、熟悉nlp算法原理及应用;

6、对新生事物或者新技术有浓厚兴趣,学习能力强。

有关大数据介绍心得体会报告四

职责:

1、 负责大数据仓库、数据集市的规划及实现,负责大数据中台的设计和核心开发工作;

2、 负责数据基础架构和数据处理体系的升级和优化,不断提升系统的稳定性和效率,为公司的业务提供大数据底层平台的支持和保证;

3、 大数据平台的数据采集、处理、存储以及挖掘分析的架构实现;

4、 研究未来数据模型和计算框架的创新与落地,包括但不限于以下领域:大规模数据实时化、研发模式敏捷化、数据计算框架轻量化、数据模型组织方式业务化等方面,参与制定并实践团队的技术发展路线

任职资格:

1、 精通数据建模、数据标准管理、元数据管理、数据质量管理;

2、 有作为技术负责人系统化解决问题的成功案例;有海量数据实践经验优先;

3、 熟悉目前正在发展的大数据分布式平台前沿技术的应用;包括但不仅仅限于:hadoop、flink、spark等;

4、 性格积极乐观,诚信,能自我驱动,有较强的语言表达能力;具备强烈的进取心、求知欲及团队合作精神;具有良好的沟通、团队协作、计划和创新的能力; 在数据业界有一定的影响力优先,具有风控经验背景的人优先;

5、 具备独立的深度思考能力,给出结合实际情况的较为理想的技术解决方案。

有关大数据介绍心得体会报告五

职责

1、针对海量用户行为数据进行挖掘和建模,深入挖掘数据的业务价值。研究机器学习或统计学习领域的前沿技术,并能活学活用到项目中。

2、基于对汽车广告投放业务及用户的理解,参与精准营销、个性化推荐等模型建设和领域研究,提升转化率等业务指标。

3、根据业务需要采集相关数据,对原始数据进行etl和归类整理,并实现流程自动化。

4、其他大数据处理及项目开发工作等。

任职要求:

1、本科及以上学历,至少3年以上机器学习、数据挖掘相关经验。

2、精通一门语言java或python等,较强的算法和数据结构功底;熟悉大规模数据挖掘、机器学习等相关技术,熟悉hadoop/spark/sparkml等优先。

3、喜欢研究新技术,优秀的分析和解决问题的能力,对挑战性问题充满激情。

4、具备良好的分析问题能力、沟通能力和团队合作能力,具备很强的学习和钻研能力

5、关注技术发展趋势,热爱开源,为开源项目贡献过代码优先。

有关大数据介绍心得体会报告六

本节课教学用”四舍五入”的方法求一个小数的近似数。教材以地球和太阳之间的距离为素材,设计了三个问题组织学生进行探索。先通过例1,引导学生用“四舍五入”的方法把1.496精确到十分位,再通过例2,引导学生用同样大方法把1.496精确到百分位,然后引导学生比较上面求出的两个近似数,理解保留的小数位数越多,求出的近似数越精确。教材安排“试一试”与例题不同的是,这里取近似数的过程中需要把百分位舍去。并引导学生总结和归纳求小数近似数的方法。

教学中引入生活实例,通过探究、互动、总结、归纳等活动,让学生掌握求小数的近似数的方法,要注意结合具体情境求小数近似数,让学生体会数学的应用价值。

教学重点:求小数近似数的方法。

教学难点:理解保留的小数位数越多,求出的近似值越精确。

目标预设:1、会根据要求用“四舍五入”的方法求一个小数的近似数。

2.使学生初步了解求一个小数的近似数时表示的精确程度,理解求得一个小数的近似数时,小数末尾的“0”不能去掉。

3、进一步理解和掌握所学的知识,体会数学在日常生活中的广泛应用,感受数学的文化价值。

学生经验:学生已经掌握了把大数目改写成整万、整亿数和整数近似数的知识,为本节课求一个小数的近似数奠定了基础。

教学准备:小黑板

教学过程:

昨天老师到银行办事,听见一位老爷爷和储蓄员在争论着。原来老爷爷的利息单上写着税后利息:9.547元,储蓄员付给爷爷9.5元,爷爷硬要9.6元,你觉得付多少比较合理?

学生回答后,问这个数据是怎么得到的?

今天我们学了求一个小数的近似数之后,你就会解决生活中这类现象了。(出示课题)

1.把下面的叙述换一种说法:

(1)1999年全国有小学生145371600人。也可以说:1999年全国大约有小学生(万)人。

(2)光的传播速度是每秒钟299800千米。也可以说:光的传播速度大约是每秒钟(万)千米。

2.下面的□里可以填上哪些数字?32□645≈32万 47□05≈47万

(1)独立完成。

(2)校对答案。

(3)说说求近似数的方法——四舍五入法。

板书:求近似数一般用四舍五入法

(一)、出示例题:

例1.地球和太阳之间的平均距离大约是1.496亿千米。

接着明确要求:

精确到十分位是多少亿千米?

精确到百分位是多少亿千米?

精确到整数是多少亿千米?

然后让学生进行独立思考,发表意见,说出结果及想法。

1、精确到十分位

思考:精确到十分位就是要保留几位小数?

(1)学生独立探索。

(2)小组交流。

(3)反馈:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上的9满5,进一。

1.496亿千米≈1.5亿千米

讲解:精确到十分位,就是保留一位小数。

2、精确到百分位

(1)独立完成

(2)组织交流。

精确到百分位就是要保留两位小数,就要省略百分位后面的数,要看千分位上的数。千分位上的6,省略尾数后向百分位进1。百分位上9+1=10,满十又要向前一位进一。

1.496亿千米≈1.50亿千米

问:近似数1.50末尾的0能去掉,为什么?

学生讨论:明确:不能去掉,去掉就不符合要求了。

教师总结:0不能去掉,它起到占位的作用。

3、比较精确度。

问:1.5和1.50哪个更精确?

学生讨论后汇报想法。

想法1:1.5是精确到十分位的结果,1.50是精确到百分位的结果,所以1.50比1.5更精确。所以1.50末尾的0不能去掉。

想法2:近似值是1.5的两位小数在1.45-1.54之间,而近似值是1.50的三位小数在1.495-1.504的范围更大,所以1.50比1.5更精确。

4、精确到整数

(1)独立完成

(2)组织交流。

精确到整数就要省略百分位后面的数,要看十分位上的数。十分位上的4,

省略小数点后的尾数。

5、教学“试一试”

学生独立解决,集体订正。

引导学生比较与刚才例题的区别,进一步明确什么时候应四舍,什么时候应五入。

(二)小结:

教师提出问题:求小数近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

(1)要根据题目的要求取近似值,

如果要保留整数,就要看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入。

(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。

(三)、教学“练一练”

学生独立解决,集体订正。

电评时引导学生在两方面进行比较:

(1)按不同精确要求求近似数的比较。

(2)取一个数的近似数与把一个数改写

成以“万”或“亿”作单位的小数的方法的比较。

第二小题练习完毕后,再要求学生把改写后的小数和求出的近似数分别放入原来的语言环境中读一读、比一比,体会到用“万”作单位的小数及其近似数的应用价值。

1.填空:

① 求一个小数的近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位……

②近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉.

2.判断题(用手势表示“√”或“×”)

①3.97精确到十分位是4.0。()

②把9.996精确到百分位是10.00。()

③8和8.0的大小相等,它们的精确度也相同。()

④在表示近似数时,小数末尾的0应该去掉。()

3.“练习七”第五题。

(1)学生独立完成

(2)教师检查反馈。

说明:把王强身高精确到百分位,体重精确到个位,让学生体会到实际应用中要根据需要来确定近似数的精确程度。

4、“练习七”第6题。

(1)组织学生观察、比较,说说哪组的两个数是等值。哪组的两个数是近似。

(2)独立填写后再组织汇报交流。

5、“练习七”第7~8题。

学生独立审题并解答。

6、解决前面的问题。在实际生活中,9.547元≈()元

5.小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看什么地方有了小数近似数,下节课来大家交流。

“练习七”第4题。

今天这节课你有哪些新的收获?还有什么要提醒同学们注意的地方吗?

1、探索是数学的生命线,没有探索就没有数学的发展。课始,先让学生明确探索的目标,给学生以思维的方向。课中,引导学生从求整数的近似数迁移至小数,使学生的探索思维多角度、多层次展开,在学生探索的过程中学习数学、理解数学,从而感受到数学的魅力。

2、新课程注重强调学生的主体地位。但是我认为在特定的课堂时空中,要让没有多少探索经验和能力贮备的学生完全自主地“找”出求小数近似数的方法,也实在有些勉为其难。

因此,在课堂教学中我注意适度地加以引导,做到了放得“开”,收得“拢”;放得适度,收得自然。

既尊重了学生的主体地位,又张扬了学生的个性,同时有效地完成了课堂教学任务。

您可能关注的文档